Chapter 2a Atoms, Molecules, and Ions

Jamie Kim Department of Chemistry Buffalo State College

Atomic Theory Until 19th Century

John Dalton (1766-1844)

- Dalton proposed a theory of matter based on it having ultimate, indivisible particles to explain these laws
- 1. Each element is composed of tiny, indestructible particles called atoms
- 2. All atoms of a given element have the same mass and other properties that distinguish them from atoms of other elements
- 3. Atoms combine in simple, whole-number ratios to form molecules of compounds
- 4. In a chemical reaction, atoms of one element cannot change into atoms of another element
 - \checkmark they simply rearrange the way they are attached

Since the End of 19th Century Discovery of Subatomic Particles

- Electron (-1)
- Nucleus
 - Proton (+1)
 - Neutron (0)

Some Notes on Charge

- Two kinds of charge called + and –
- Opposite charges attract
 - + attracted to –
- Like charges repel
 - + repels +
 - – repels –
- To be neutral, something must have no charge or equal amounts of opposite charges

© 2011 Pearson Education, Inc.

Thomson's Cathode Ray Experiment (1897)

 Charged matter coming out of cathode is attracted to an electric field to positively charged plate
 Light's path is not deflected by an electric field

Thomson's Results: Electrons

- The cathode rays are <u>made of tiny particles</u>
- These particles have <u>a negative charge</u>
 because the beam always deflected toward the + plate
- Every material tested contained these same particles
- The charge:mass ratio of these particles was -1.76 x 10⁸ C/g
- These cathode ray particles became known as electrons

Milikan's Experiment (1906)

Millikan's experiment measured the charge of individual electron. (-1.6 x10⁻¹⁹)

Subatomic particle: Electrons

- Electrons are tiny, negatively charged particles found in all atoms
- The electron has a charge of $-1.60 \times 10^{19} \text{ C}$ (-1 charge)
- The electron has a mass of 9.1 x 10^{-28} g

- The structure of the atom contains many negatively charged electrons
- These electrons are held in the atom by their attraction for a positively charged electric field within the atom

© 2011 Pearson Education, Inc.

© 2011 Pearson Education, Inc.

Rutherford's Conclusions

- Atom mostly empty space
 - because almost all the particles went straight through
- Atom contains a dense particle that is small in volume compared to the atom but large in mass
 - because of the few particles that bounced back
- This dense particle is positively charged

 because of the large deflections of some of
 the particles

Rutherford's Interpretation – the Nuclear Model

- 1. The atom contains a tiny dense center called the **nucleus**
- 2. The nucleus has essentially the entire mass of the atom
 - the electrons weigh so little they give practically no mass to the atom
- 3. The nucleus is positively charged
 - the amount of positive charge balances the negative charge of the electrons
- 4. The electrons are dispersed in the empty space of the atom surrounding the nucleus

Relative Size of Atom and Nucleus

 If an atom could be expanded to the size of a football stadium, the nucleus would be the size of a single blueberry.

Structure of the Nucleus

Subatomic	Mass	Mass	Location	Charge	Symbol
Particle	g	amu	in atom		
Proton	1.67262 x 10 ⁻²⁴	1.00727	nucleus	+1	p, p⁺, H⁺
Electron	0.00091 x 10 ⁻²⁴	0.00055	empty space	-1	e, e ⁻
Neutron	1.67493 x 10 ⁻²⁴	1.00866	nucleus	0	n, n ^o

Atomic Number and Mass Number

\circ Atomic number (Z) =

\circ Mass number (A) =

How many protons, electrons, and neutrons are in an atom of $\frac{52}{24}$ Cr ?

Complete the Table

Protons	Neutrons	Electrons	Atomic Number	Mass Number	Atomic Symbol
6	7				
		42		96	
					²⁷ 13AI
			55	133	

 The isotopes of the same element have atoms with the same number of electrons but different numbers of neutrons.

 $^{35}_{17}$ Cl

 $^{37}_{17}Cl$

Symbol	Number of Protons	Number of Neutrons	A, Mass Number	Percent Natural Abundance
Ne-20 or $^{20}_{10}$ Ne	10	10	20	90.48%
Ne-21 or ²¹ Ne	10	11	21	0.27%
Ne-22 or ²² Ne	10	12	22	9.25%

Atomic Mass and Average Atomic Mass

• Atomic mass units (amu)

- 1 atom of ¹²C has a mass of exactly 12 amu
- 1 amu equals exactly 1/12 the mass of 1 atom of ¹²C Note: atomic mass ≠ mass number
- Average atomic mass in the periodic table
 - Necessary due to the presence of isotopes

Where can you find atomic mass?

26

Atomic Mass Number (A) vs Atomic Mass

- Atomic mass number: # of protons + # of neutrons (whole number)
 - ${}^{20}_{10}$ Ne
- Atomic Mass (amu): relative mass compared to ¹²C (12 amu)
 - ${}^{20}_{10}{
 m Ne}$

If copper is 69.17% Cu-63 with a mass of 62.9396 amu and the rest Cu-65 with a mass of 64.9278 amu, find copper's atomic mass

Average Atomic Mass in Periodic Table

 Naturally found CI is a mixture of two isotopes: 75.77 % of ³⁵CI (34.97amu) and 24.23 % ³⁷CI (36.97 amu). What is its average atomic mass?

Charged Atoms

- When atoms gain or lose electrons by chemical reactions, they acquire a charge
- Charged atoms or groups of atoms are called ions
- When atoms gain electrons, they become negatively charged ions, called **anions**
- When atoms lose electrons, they become positively charged ions, called cations

Anion

Anion

	Cl	CI-
# of electrons	17	18
# of protons	17	17
Net charge	0	-1

Cation

	Na	Na+
# of electrons	11	10
# of protons	11	11
Net charge	0	+1

Practice – Complete the Table

Atomic Number	Protons	Electrons	lon Charge	lon Symbol
16		18		
	12		2+	
				AI^{3+}
		36	1–	

Discovery of Elements and Their Periodic Properties

H hydrogen			Time of Discovery											He helium			
Li	Be		Before 1800 1800–1849 1850–1899								B	C	N	O	F	Ne	
lithium	beryllium		1900–1949 1950–1999								boron	carbon	nitrogen	oxygen	fluorine	neon	
Na sodium	Mg magnesium		Al aluminum silicon P S Cl chlorine								Ar argon						
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
cesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
Fr francium	Ra radium	Ac actinium	Rf rutherfordium	Db dubnium	Sg seaborgium	Bh bohrium	Hs hassium	Mt meitnerium	Ds darmstadtium	Rg roentgenium							

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium

© 2011 Pearson Education, Inc.

Ion Charge and the Periodic Table

- The charge on an ion can often be determined from an element's position on the Periodic Table
- Metals always form positively charged cations
- For many main group metals, the charge = the group number
- Nonmetals form negatively charged anions
- For nonmetals, the charge = the group number - 8

Ion Charge and the Periodic Table

© 2011 Pearson Education, Inc.

H: +1 for HF, HCI, HBr, H₂O, etc (when combined with nonmetals) H:-1 for LiH, NaH, CaH₂, etc (when combined with metals)

Practice – What is the charge on each of the following ions?

- potassium cation
- sulfide anion
- calcium cation
- bromide anion
- aluminum cation