Chapter 2b Atoms, Molecules, and Ions

Jamie Kim

Department of Chemistry Buffalo State College

Elements and Compounds in Our World

Classification of Elements and Compounds

Elements

Elements can be present as the following forms:
Free element (Atomic) : $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar} . .$.
Diatomic molecules: $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2} \ldots \ldots$
Polyatomic molecules: $\mathrm{P}_{4}, \mathrm{~S}_{8}$

Compounds

- Ionic compounds are composed of ions arranged in a 3-dimensional pattern
- each cation is surrounded by anions, and vice-versa
- Consisting of metal and nometal
- Use only empirical formula ($\mathrm{NaCl}, \mathrm{KCl}$, etc)
- Molecular compounds are composed of individual molecule units
- Each molecule contains atoms of different elements chemically attached by covalent bonds
- Consisting of nonmetals
- Use molecular formula $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$, etc $)$

Chemical Bonds

- Compounds are made of atoms held together by chemical bonds
- lonic compounds via lonic bonds: oppositely charged ions that attract each other
- Between metal atoms and nonmetal atoms (NaCl , MgO , etc)
- Molecular compounds via covalent bonds: two atoms share some of their electrons
- Between nonmetal atoms $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}\right.$, etc)

lonic vs. Molecular Compounds

A Molecular Compound

(a)

An Ionic Compound

(b)

Propane - contains individual $\mathrm{C}_{3} \mathrm{H}_{8}$ molecules

Table salt - contains an array of Na^{+}ions and Cl^{-}ions

Classify Each of the Following as Either an
 Atomic Element, Molecular Element, Molecular Compound, or Ionic Compound

Aluminum, AI
Aluminum chloride, AlCl_{3}
Chlorine, Cl_{2}
Acetone, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
Carbon monoxide, CO
Cobalt, Co

Ex. 01 Element or compound

- He
- Ne
- K
$\circ I_{2}$
- NaCl
- $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
- S_{4}

Representing Compounds with Chemical Formula

- Compounds are generally represented with a chemical formula
- The amount of information about the structure of the compound varies with the type of formula
- all formula and models convey a limited amount of information - none are perfect representations
- All chemical formulas tell what elements are in the compound
- use the letter symbol of the element

Molecular formula © 2011 Pearson Education, Inc.

Structural formula

Ball-and-stick model

Space-filling model

Types of Formula

- An empirical formula gives the relative number of atoms of each element in a compound (NaCl , etc)
- A molecular formula gives the actual number of atoms of each element in a molecule compound
$>$ it does not describe the order of attachment, or the shape
$>\mathrm{H}_{2} \mathrm{O}$
$>$ Structural formula

Types of Formula

- Glucose
- 12 H atoms, 6 O atoms, 6 C atoms in a molecule
- Molecular formula: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (no further structural information, etc)
- Empirical formula: $\mathrm{CH}_{2} \mathrm{O}$ (the ratio of C, H, and O atom in a molecule is $1: 2: 1$)

Structural formula

Examples

- Write empirical formulas for the following compounds
- $\mathrm{C}_{4} \mathrm{H}_{8}$
- $\mathrm{B}_{2} \mathrm{H}_{6}$
- CCl_{4}
- $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$

TABLE 3.1 Benzene, Acetylene, Glucose, and Ammonia

Ionic Compounds

- total 0 charge
- Na^{+}and $\mathrm{S}^{2-} \ggg \mathrm{Na}_{2} \mathrm{~S}$

Write a formula for ionic compound that forms

 between calcium and oxygen
Writing Formulas for Ionic Compounds

1. Write the symbol for the metal cation and its charge
2. Write the symbol for the nonmetal anion and its charge
3. Charge (without sign) becomes subscript for other ion
4. Reduce subscripts to smallest whole number ratio
5. Check that the sum of the charges of the cations cancels the sum of the anions

Write the formula of a compound made from aluminum ions and oxide ions

Practice - What are the formulas for compounds made from the following ions?

- Potassium ion with a nitride ion
- Calcium ion with a bromide ion
- Aluminum ion with a sulfide ion

Formula-to-Name Rules for Ionic Compounds

- Made of cation and anion
- Write systematic name by simply naming the ions
\checkmark if cation is:
$>$ metal with invariant charge $=$ metal name
$>$ metal with variable charge $=$ metal name (charge)
$>$ polyatomic ion $=$ name of polyatomic ion
\checkmark if anion is:
$>$ nonmetal $=$ stem of nonmetal name + ide
$>$ polyatomic ion $=$ name of polyatomic ion

Naming Metal Cations

TABLE 3.2 Metals Whose Charge Is Invariant from One Compound to Another

- Metals with invariant charge
- metals whose ions can only have one possible charge
- Groups $1 \mathrm{~A}^{1+}$ \& $2 \mathrm{~A}^{2+}, \mathrm{Al}^{3+}$, $\mathrm{Ag}^{1+}, \mathrm{Zn}^{2+}, \mathrm{Sc}^{3+}$
- cation name = metal name

Metal	lon	Name	Group Number
Li	Li^{+}	Lithium	1 A
Na	Na^{+}	Sodium	1 A
K	$\mathrm{~K}^{+}$	Potassium	1 A
Rb	Rb^{+}	Rubidium	1 A
Cs	Cs^{+}	Cesium	1 A
Be	Be^{2+}	Beryllium	2 A
Mg	Mg^{2+}	Magnesium	2 A
Ca	Ca^{2+}	Calcium	2 A
Sr	Sr^{2+}	Strontium	2 A
Ba	Ba^{2+}	Barium	2 A
Al	Al^{3+}	Aluminum	3 A
Zn	Zn^{2+}	Zinc	$*$
Sc	Sc^{3+}	Scandium	$*$
$\mathrm{Ag}^{* *}$	Ag^{+}	Silver	$*$

[^0]
Naming Metal Cations

- Metals with variable Charges (transition metals)
\checkmark metals whose ions can have more than one possible charge
\checkmark determine charge by charge on anion and cation
\checkmark name $=$ metal name with Roman numeral charge in parentheses

TABLE 3.4 Some Metals That Form Cations with Different Charges

Metal	Ion	Name	Older Name
Chromium	Cr^{2+}	Chromium(II)	Chromous
	Cr^{3+}	Chromium(III)	Chromic
Iron	Fe^{2+}	Iron(II)	Ferrous
	Fe^{3+}	Iron(III)	Ferric
Cobalt	Co^{2+}	Cobalt(II)	Cobaltous
	Co^{3+}	Cobalt(III)	Cobaltic
Copper	Cu^{+}	Copper(I)	Cuprous
	Cu^{2+}	Copper(II)	Cupric
Tin	Sn^{2+}	Tin(II)	Stannous
	Sn^{4+}	Tin(IV)	Stannic
Mercury	$\mathrm{Hg}_{2}{ }^{2+}$	Mercury(II)	Mercurous
	Hg^{2+}	Mercury(II)	Mercuric
Lead	Pb^{2+}	Lead(II)	Plumbous
	Pb^{4+}	Lead(IV)	Plumbic

*An older naming system substitutes the names found in this column for the name of the metal and its charge. Under this system, chromium(II) oxide is named chromous oxide. In this system, the suffix -ous indicates the ion with the lesser charge and -ic indicates the ion with the greater charge. We will not use the older system in this text.

Naming Monatomic Nonmetal Anion

- Determine the charge from position on the Periodic Table
- To name anion, change ending on the element name to -ide

$4 \mathrm{~A}=4-$	$5 \mathrm{~A}=3-$	$6 \mathrm{~A}=2-$	$7 \mathrm{~A}=1-$
$\mathrm{C}=$ carbide	$\mathrm{N}=$ nitride	$\mathrm{O}=$ oxide	$\mathrm{F}=$ fluoride
$\mathrm{Si}=$ silicide	$\mathrm{P}=$ phosphide	$\mathrm{S}=$ sulfide	$\mathrm{Cl}=$ chloride

NaCl : sodium chloride $\mathrm{Al}_{2} \mathrm{O}_{3}$: aluminum oxide

Practice - Name the following compounds

1. KCl
2. MgBr_{2}
3. $\mathrm{Al}_{2} \mathrm{~S}_{3}$

Naming Binary lonic Compounds for Metals with Variable Charge

$\mathrm{Fe}_{2} \mathrm{O}_{3}$: $\operatorname{Iron}(\mathrm{III})$ oxide

How do I know the charge of Fe is +3 ?

Find the charge on the cation

1.	TiCl_{4}
2.	CrO_{3}
3.	$\mathrm{Fe}_{3} \mathrm{~N}_{2}$

Example: Naming binary ionic with variable charge metal, CuF_{2}

1. Identify cation and anion

$$
\mathrm{F}=\mathrm{F}^{-} \text {because it is Group } 7
$$

$\mathrm{Cu}=\mathrm{Cu}^{2+}$ to balance the two (-) charges from $2 \mathrm{~F}^{-}$
2. Name the cation

$$
\mathrm{Cu}^{2+}=\operatorname{copper}(\mathrm{II})
$$

3. Name the anion

$$
\mathrm{F}^{-}=\text {fluoride }
$$

4. Write the cation name first, then the anion name copper(II) fluoride

Name the following compounds

1. TiCl_{4}
2. PbBr_{2}
3. $\quad \mathrm{Fe}_{2} \mathrm{~S}_{3}$

Example: Writing formula for binary ionic compounds containing variable charge metal manganese(IV) sulfide

Practice - What are the formulas for compounds made from the following ions?

copper(II) ion with a nitride ion
iron(III) ion with a bromide ion

Some Common Polyatomic Ions (formed by covalent bonds)

Name	Formula	Name	Formula
acetate	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	hypochlorite	ClO^{-}
carbonate	$\mathrm{CO}_{3}{ }^{\text {- }}$	chlorite	$\mathrm{ClO}_{2}{ }^{-}$
hydrogen carbonate (aka bicarbonate)	$\mathrm{HCO}_{3}{ }^{-}$	chlorate	$\mathrm{ClO}_{3}{ }^{-}$
		perchlorate	$\mathrm{ClO}_{4}{ }^{-}$
hydroxide	OH^{-}	sulfate	$\mathrm{SO}_{4}{ }^{2-}$
nitrate	$\mathrm{NO}_{3}{ }^{-}$	sulfite	$\mathrm{SO}_{3}{ }^{2-}$
nitrite	$\mathrm{NO}_{2}{ }^{-}$	hydrogen sulfate	
chromate	$\mathrm{CrO}_{4}{ }^{2-}$	(aka bisulfate)	HSO_{4}
dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	hydrogen sulfite	
ammonium	NH_{4}^{+}	(aka bisulfite)	

Structure of Polyatomic Ions

$\mathrm{CH}_{3} \mathrm{COONa}$: sodium acetate

Compounds Containing Polyatomic Ions

- NaNO_{2} : Sodium nitrite
- FeSO_{4} : Iron(II) sulfate
- $\mathrm{NH}_{4} \mathrm{NO}_{3}$: Ammonium nitrate

Example - Writing formula for ionic compounds containing polyatomic ion Iron(III) phosphate

Practice - What are the formulas for compounds made from the following ions?

aluminum ion with a sulfate ion
chromium(II) with hydrogen carbonate

Hydrates

- Hydrates are ionic compounds containing a number of water molecules for each formula unit
- Water molecules are physically attached not chemically bonded
- Water of hydration often "driven off" by heating
- In formula, attached waters follow " $\checkmark \mathrm{CoCl}_{2}-6 \mathrm{H}_{2} \mathrm{O}$
- In name attached waters indicated by prefix+hydrate after name of ionic compound $\checkmark \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=$ cobalt(II) chloride hexahydrate $\checkmark \mathrm{CaSO}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}=$ calcium sulfate hemihydrate

Prefix	No. of Waters
hemi	$1 / 2$
mono	1
di	2
tri	3
tetra	4
penta	5
hexa	6
hepta	7
octa	8

Cobalt(II) chloride hexahydrate

Hydrate

Anhydrous

$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

CoCl_{2}

Moisture Indicator

Practice

What is the formula of magnesium sulfate heptahydrate?

What is the name of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$?

Writing Names of Binary Molecular Compounds of Two Nonmetals

1. Write name of first element in formula
a) element furthest left and down on the Periodic Table
b) use the full name of the element
2. Writes name the second element in the formula with an -ide suffix
a) as if it were an anion, however, remember these compounds do not contain ions!
3. Use a prefix in front of each name to indicate the number of atoms
a) Never use the prefix mono- on the first element

Subscript - Prefixes

- 1 = mono-
\checkmark not used on first nonmetal
- $2=$ di-
- $3=$ tri-
- 4 = tetra-
- 5 = penta-
- Drop last "a" if name begins with a vowel

Example: Naming Binary Molecular

$$
\mathrm{BF}_{3}
$$

Name the Following

NO_{2}

PCl_{5}

$\mathrm{I}_{2} \mathrm{~F}_{7}$

Example: Binary Molecular
dinitrogen pentoxide

Write Formulas for the Following

dinitrogen tetroxide
sulfur hexafluoride
diarsenic trisulfide

Naming Binary Acids

- Write a hydro prefix
- Follow with the nonmetal name
- Change ending on nonmetal name to -ic
- Write the word acid at the end of the name

Names of Binary Acids

$\mathrm{HF}(\mathrm{aq})$ - hydrofluoric acid $\mathrm{HCl}(\mathrm{aq})$ - hydrochloric acid $\mathrm{HBr}(\mathrm{aq})$ - hydrobromic acid $\mathrm{HI}(\mathrm{aq})$ - hydriodic acid $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$ - hydrosulfuric acid

HCl: Hydrogen chloride (this is gas)
$\mathrm{HCl}(\mathrm{aq})$: hydrochloric acid formed by dissolving HCl in water

Naming Oxyacids

- If polyatomic ion name ends in -ate, then change ending to -ic suffix
- If polyatomic ion name ends in -ite, then change ending to -ous suffix
- Write word acid at end of all names
base name of oxyanion
+ -ic
base name of oxyanion + -ous

Names of Oxyacids

$\mathrm{NO}_{3}{ }^{-}$is nitrate, and HNO_{3} is nitric acid. NO_{2}^{-}is nitrite, and HNO_{2} is nitrous acid.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$is acetate, and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is acetic acid.
$\mathrm{SO}_{4}{ }^{2-}$ is sulfate, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is sulfuric acid.
$\mathrm{SO}_{3}{ }^{2-}$ is sulfite, and $\mathrm{H}_{2} \mathrm{SO}_{3}$ is sulfurous acid.
$\mathrm{CO}_{3}{ }^{2-}$ is carbonate, and $\mathrm{H}_{2} \mathrm{CO}_{3}$ is carbonic acid.
$\mathrm{PO}_{4}{ }^{3-}$ is phosphate, and $\mathrm{H}_{3} \mathrm{PO}_{4}$ is phosphoric acid.

Homework

HW Chapter 2: will be announced

[^0]: *The charge of these metals cannot be inferred from their group number.
 **Silver sometimes forms compounds with
 other charges, but these are rare.

