Chapter 4

Stoichiometry of Chemical Reactions

Jamie Kim
Department of Chemistry Buffalo State College

Topics to be covered

- Balancing reaction equations
- Stoichiometric calculations
- Limiting reactant, theoretical yield, percent yield
- Precipitation reactions
- Acid-base reactions
- Reduction-oxidation reactions
- Titration

Chemical equations

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- Reactants on the left side, products on the right side
- An arrow separates the reactant and the product sides of the equation.
- Reaction coefficients represent the relative numbers of reactants and products.
- States of reactants and products should be shown in parentheses. (g): gas,)s): solid, (I): liquid, (aq): aqeuous
- Reaction equation should be balanced. Equal numbers of atoms for each element between left and right sides.

Balancing reaction equations

- Zn wire reacts with aqueous HCl solution

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)
$$

- Atoms are neither created nor destroyed during chemical reactions
- \# of all atoms before and after reaction should be same
- Chemical reaction is wrong (not balanced)
- Why?

Balancing reaction equations

1. List elements found in both reactants and products
2. Count \# of reactants and products that contain these elements
3. Element found in fewer reactants and compounds start first
4. Putting numbers (stoichiometry coefficients) in front of reactions and/or products
5. After done, check
${ }_{-} \mathrm{H}_{2}(\mathrm{~g})+{ }_{-} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow{ }_{-} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$__{3} \mathrm{C}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ _ $_{2}(\mathrm{~g})+{ }_{-} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
${ }_{-} \mathrm{CaCl}_{2}(\mathrm{aq})+_{-} \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow_{-} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+_{-} \mathrm{KCl}(\mathrm{aq})$

One more example

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Reaction coefficients in balanced reaction equation

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})+6 \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$1 \mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ reacts with $6 \mathrm{~mol} \mathrm{O}_{2}$ to produce $6 \mathrm{~mol} \mathrm{CO}_{2}$ and $6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \Leftrightarrow ? \mathrm{~mol} \mathrm{O}_{2} \Leftrightarrow$? $\mathrm{mol} \mathrm{CO}_{2} \Leftrightarrow ? \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Reaction stoichiometry

How many moles of O_{2} will be required to burn 0.50 mol of glucose?

Use of mole-to-mole ratio

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})+6 \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

- How many grams of oxygen is required to completely react with 1.00 g of glucose?
- How many grams of CO_{2} will be produced in the above reaction?

Example: Use of mole-to-mole ratio

$$
2 \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(l)
$$

To produce 86.9 g of iron, how many grams of iron oxide will be required? Assume that we have enough amount of aluminium.

$$
86.0 \mathrm{~g} \mathrm{Fe} \Leftrightarrow ? \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

Limiting and excess reactants

1 sandwich $=2$ slices of bread +1 slice of cheese

Provided with:
28 slices of bread
+11 slices of cheese

We can make:
11 sandwiches

Limiting and excess reactants

- In previous slide, how many sandwich can you make if you are provided with 28 slices of bread and 16 slices of cheese?
- Which ingredient will be left?

Limiting reagent

- The reactant which determines the amount of product in a chemical reaction occurring in a non-stoichiometric ratio and is completely consumed in the reaction

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})
$$

Keep in mind that mole \# and \# of molecules are related.

1 mol	1 mol	stoichiometric ratio
2 mol	2 mol	stoichiometric ratio
3 mol	1 mol	nonstoichiometric ratio
1 mol	3 mol	nonstoichiometric ratio

- Which one is a limiting reagent in third and fourth case?

Limiting reagent

- Now let's consider a chemical reaction in which the stoichiometric ratio between the reactants is NOT one-toone.

We need to use the "mole ratio" from the reaction equation.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})+6 \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

Determine which one is the limiting reagent in the following cases.
$6 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{~mol} \mathrm{O}_{2}$
$12 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{~mol} \mathrm{O}_{2}$
$6 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+12 \mathrm{~mol} \mathrm{O}_{2}$
$6 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+1 \mathrm{~mol} \mathrm{O}_{2}$

Ex. Limiting reagent

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)
$$

Which one is the limiting reagent in each case?

$$
\begin{array}{lc}
2 \mathrm{~mol} \mathrm{~N}_{2} & 6 \mathrm{~mol} \mathrm{H}_{2} \\
1 \mathrm{~mol} \mathrm{~N}_{2} & 4 \mathrm{~mol} \mathrm{H}_{2} \\
2 \mathrm{~mol} \mathrm{~N}_{2} & 4 \mathrm{~mol} \mathrm{H}_{2} \\
1.1 \mathrm{~mol} \mathrm{~N}_{2} & 3.5 \mathrm{~mol} \mathrm{H}_{2} \\
2.5 \mathrm{~mol} \mathrm{~N}_{2} & 0.8 \mathrm{~mol} \mathrm{H}_{2}
\end{array}
$$

Determination of product amount (nonstoichiometric condition!)

- 1.0 kg of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)+0.010 \mathrm{~kg}$ of steam $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in a reaction vessel. How much amount of ethanol will be produced?

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})
$$

When the masses of reactant are given in the question instead of moles, convert mass to mol first!

Percent yield

$$
\text { Percent yield }=\frac{\text { Actual yield }}{\text { Theoretical yield }} 100
$$

In reality, the amount of product collected less than theoretically calculated.

Percent yield calculation

- 12.0 g of P and 35.0 g of $\mathrm{Cl}_{2}(\mathrm{~g})$ were mixed and 42.4 g of $\mathrm{PCl}_{3}(\mathrm{I})$ were produced. Calculate the percentage yield of PCl_{3}.

$$
2 \mathrm{P}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PCl}_{3}(\mathrm{l})
$$

What Happens When a Solute Dissolves?

- There are attractive forces between the solute particles holding them together
- There are also attractive forces between the solvent molecules
- When we mix the solute with the solvent, there are attractive forces between the solute particles and the solvent molecules
- If the attractions between solute and solvent are strong enough, the solute will dissolve

Table Salt Dissolving in Water

Each ion is attracted to the surrounding water molecules and pulled off and away from the crystal
When it enters the solution, the ion is surrounded by water molecules, insulating it from other ions
The result is a solution with free moving charged particles able to conduct electricity

NaCl vs. Sugar Dissolved in Water

ionic compounds dissociate into ions when they dissolve
molecular compounds do not dissociate when they dissolve

Electrolytes and Nonelectrolytes

- Materials that dissolve in water to form a solution that will conduct electricity are called electrolytes (produce ions, ionic compounds, $\mathrm{NaCl}, \mathrm{KCl}$, etc)

Salt
solution

Sugar

 solutionNonconductive

- Materials that dissolve in water to form a solution that
will not conduct electricity are called nonelectrolytes
(do not produce ions,
molecular compounds,
sugar, ethanol, etc)

Exceptions: Acids

- Acids are molecular compounds that ionize when they dissolve in water
- the molecules are pulled apart by their attraction for the water
- when acids ionize, they form H^{+}cations and also anions
- Acids that ionize virtually 100% are called strong acids

$$
\mathrm{HCl}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

- Acids that only ionize a small percentage are called weak acids

$$
\mathrm{HF}(a q) \Leftrightarrow \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q)
$$

Dissociation and Ionization

- When ionic compounds dissolve in water, the anions and cations are separated from each other. This is called dissociation.

$$
\mathrm{Na}_{2} \mathrm{~S}(a q) \rightarrow 2 \mathrm{Na}^{+}(a q)+\mathrm{S}^{2-}(\mathrm{aq})
$$

- When compounds containing polyatomic ions dissociate, the polyatomic group stays together as one ion

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}(a q) \rightarrow 2 \mathrm{Na}^{+}(a q)+\mathrm{SO}_{4}^{2-}(a q)
$$

- When molecular compounds (e.g. strong acids) dissolve in water, the molecule ionizes into H^{+}and anions

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow 2 \mathrm{H}^{+}(a q)+\mathrm{SO}_{4}^{2-}(a q)
$$

Write the equation for the process that occurs when the following strong electrolytes dissolve in water

CaCl_{2}

HNO_{3}
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Concentration of ions from strong electrolytes

- 0.10 M KCl
- $0.10 \mathrm{M} \mathrm{CaCl}_{2}$
- $0.10 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$

Solubility of Ionic Compounds

- Some ionic compounds, such as NaCl , dissolve very well in water at room temperature
- Other ionic compounds, such as AgCl , dissolve hardly at all in water at room temperature
- Compounds that dissolve in a solvent are said to be soluble, where as those that do not are said to be insoluble
-NaCl is soluble in water, AgCl is insoluble in water
- the degree of solubility depends on the temperature
- even insoluble compounds dissolve, just not enough to be meaningful

Solubility Rules

Compounds that are Generally Soluble in Water

Exceptions

Compounds Containing the Following lons are Generally Soluble
(when combined with ions on
the left, the compound is insoluble)
$\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$
$\mathrm{NO}_{3}{ }^{-}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
$\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
$\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
$\mathrm{SO}_{4}{ }^{2-}$
$\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$

Solubility Rules Compounds that are Generally in Water

Exceptions

Compounds Containing the Following lons are Generally Insoluble
OH^{-}
(when combined with ions on
the left the compound is
soluble or slightly soluble)
$\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}{ }^{+}$,
$\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$
$\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$
$\mathrm{CO}_{3}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}$
$\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$

Practice - Determine if each of the following is soluble in water

KOH
AgBr
CaCl_{2}
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
PbSO_{4}

Types of Reactions

- Precipitation reactions
- Acid-base reaction
- Oxidation-reduction reaction

Precipitation Reactions

- Precipitation reactions are reactions in which a solid forms when we mix two solutions
- reactions between aqueous solutions of ionic compounds
- produce an ionic compound that is insoluble in water
- the insoluble product is called a precipitate

$2 \mathrm{KI}(a q)+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{KNO}_{3}(a q)$

No Precipitate Formation = No Reaction

$\mathrm{KI}(a q)+\mathrm{NaCl}(a q) \rightarrow$ no reaction all ions still present

Predict the products and balance the equation
$\mathrm{KCl}(a q)+\mathrm{AgNO}_{3}(a q) \rightarrow$
$\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{CaCl}_{2}(\mathrm{aq}) \rightarrow$

Molecular vs. Ionic Equations

- Equations that describe the chemicals put into the water and the product molecules are called molecular equations
$2 \mathrm{KOH}(\mathrm{aq})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{Mg}(\mathrm{OH})_{2}(s)$
- Equations that describe the material's structure when dissolved are called complete ionic equations
- aqueous strong electrolytes are written as ions
- soluble salts, strong acids, strong bases
- insoluble substances, weak electrolytes, and nonelectrolytes are written in molecule form
- solids, liquids, and gases are not dissolved, therefore molecule form $2 \mathrm{~K}^{+}{ }_{(a q)}+2 \mathrm{OH}^{-}{ }_{(a q)}+\mathrm{Mg}^{2+}{ }_{(a q)}+2 \mathrm{NO}_{3}{ }^{-}{ }_{(a q)} \rightarrow 2 \mathrm{~K}^{+}{ }_{(a q)}+2 \mathrm{NO}_{3}{ }^{-}(a q)+\mathrm{Mg}(\mathrm{OH})_{2(s)}$

Ionic Equations

- Ions that are both reactants and products are called spectator ions (not involved in chemical reactions)
$2 \mathrm{~K}^{+}{ }_{(a q)}+2 \mathrm{OH}^{-}{ }_{(a q)}+\mathrm{Mg}^{2+}{ }_{(\text {aq }}+2 \mathrm{NO}_{3}{ }^{-}+2 \mathrm{~K}^{+}\left(\right.$(aq) $+2 \mathrm{NO}_{3}^{-}{ }_{(a q)}+\mathrm{Mg}\left(\mathrm{OH}_{2(s)}\right.$
- An ionic equation in which the spectator ions are removed is called a net ionic equation

$$
2 \mathrm{OH}^{-}{ }_{(a q)}+\mathrm{Mg}^{2+}{ }_{(a q)} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(s)}
$$

Write the ionic and net ionic equation for each

$\mathrm{K}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{AgNO}_{3}(a q) \rightarrow 2 \mathrm{KNO}_{3}(a q)+\mathrm{Ag}_{2} \mathrm{SO}_{4}(s)$
$\mathrm{Na}_{2} \mathrm{CO}_{3}(a q)+2 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{NaCl}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\Lambda)$

Acids and Bases in Solution

- Acids ionize in water to form H^{+}ions (proton)
- more precisely, the H from the acid molecule is donated to a water molecule to form hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$
- most chemists use H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$interchangeably
- Bases dissociate in water to form OH^{-}ions (hydroxide)
- bases, such as NH_{3}, that do not contain OH^{-}ions, produce OH^{-}by pulling H off water molecules
- In the reaction of an acid with a base, the H^{+}from the acid combines with the OH^{-}from the base to make water
- The cation from the base combines with the anion from the acid to make the salt

$$
\text { acid + base } \rightarrow \text { salt + water }
$$

Acid-Base Reactions

- Called neutralization reactions because the acid and base neutralize each other's properties
$2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\Omega)$
- The net ionic equation for an acid-base reaction is

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\Omega)
$$

Chemical Name Formula Uses Strength

Perchloric Acid $\mathrm{HClO}_{4} \quad$ explosives, catalyst \quad Strong

Nitric Acid HNO_{3} explosives, fertilizer, dye, Strong
$\begin{array}{lll}\text { Sulfuric Acid } & \mathrm{H}_{2} \mathrm{SO}_{4} & \begin{array}{c}\text { explosives, fertilizer, dye, } \\ \text { glue, batteries }\end{array}\end{array}$ Strong

Hydrochloric Acid	HCl	metal cleaning, food prep, ore refining, stomach acid fertilizer, plastics \& rubber, food preservation	Moderate
Phosphoric Acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	explosives	Moderate
Chloric Acid	HClO_{3}	plastics \& rubber, food preservation, vinegar	Weak
Acetic Acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	metal cleaning, glass	Weak
Hydrofluoric Acid	HF	soda water	Weak
Carbonic Acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	sanitizer	Weak
Hypochlorous	$\mathrm{HClO}^{\text {Hyy }}$ Woric Acid	$\mathrm{H}_{3} \mathrm{BO}_{3}$	eye wash
Beak			

Common Bases

Chemical Name	Formula	Common Name	Uses	Strength
sodium hydroxide	NaOH	lye, caustic soda	soap, plastic, petrol refining	Strong
potassium hydroxide	KOH	caustic potash	soap, cotton, electroplating	Strong
calcium hydroxide	$\mathrm{Ca}(\mathrm{OH})_{2}$	slaked lime	cement	Strong
sodium bicarbonate	NaHCO 3	baking soda	cooking, antacid	Weak
magnesium hydroxide	$\mathrm{Mg}(\mathrm{OH})_{2}$	milk of magnesia	antacid	Weak
ammonium hydroxide	$\mathrm{NH}_{4} \mathrm{OH}$,	ammonia		
$\left\{\mathrm{NH}_{3}(\mathrm{aq})\right\}$	water	detergent, fertilizer, explosives, fibers	Weak	

$\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)$
 $+\mathrm{H}_{2} \mathrm{O}()$

Write the molecular, ionic, and net-ionic equation for the reaction of aqueous nitric acid $\left(\mathrm{HNO}_{3}\right)$ with aqueous calcium hydroxide $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$

Predict the products and balance the equation

$\mathrm{HCl}(a q)+\mathrm{Ba}(\mathrm{OH})_{2}(a q) \rightarrow$
$\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{Sr}(\mathrm{OH})_{2}(a q) \rightarrow$

Titration

- a solution's unknown concentration can be determined by reacting it with another solution with known concentration and using stoichiometry - this process is called titration
- In the titration, the unknown solution is added to a known amount of another reactant until the reaction is just completed (endpoint) At this point, called the endpoint.
- the unknown solution is added slowly from an instrument called a burette
- a long glass tube with precise volume markings that allows small additions of solution

Acid-Base Titrations

- In acid-base titrations, because both the reactant and product solutions are usually colorless, a chemical is added that changes color when the solution undergoes large changes in acidity/alkalinity
- the chemical is called an indicator
- From the stoichiometry, we can decide the concentration of unknown solution

Indicator: Color Change in Titration

[^0]The titration of 10.00 mL of HCl solution of unknown concentration requires 20 mL of 0.100 M NaOH solution to reach the end point. What is the concentration of the unknown HCl solution?

Titration

- 28.40 mL of 0.150 M NaOH wad added to titrate 25.00 mL of $\mathrm{HCH}_{3} \mathrm{COO}$ solution. What is the concentration (M) of $\mathrm{CH}_{3} \underline{\mathrm{COOH}}$?

Oxidation-Reduction Reactions

- involve transferring electrons from one atom to another
- also known as redox reactions
- many involve the reaction of a substance with $\mathrm{O}_{2}(\mathrm{~g})$

$$
4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)
$$

Combustion as Redox
 $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

Hydrogen and oxygen react to form gaseous water.

Redox without Combustion
 $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})$

$$
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NaCl}(s)
$$

Electrons are transferred from sodium to chlorine, forming sodium chloride. Sodium is oxidized and chlorine is reduced.

Oxidation and Reduction

- Reactions where electrons are transferred from one atom to another are redox reactions
- Atoms that lose electrons are being oxidized, atoms that gain electrons are being reduced

$$
\begin{gathered}
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Na}^{+} \mathrm{Cl}^{-}(s) \\
\mathrm{Na} \rightarrow \mathrm{Na}^{+}+1 \mathrm{e}^{-} \text {oxidation } \\
\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-} \text {reduction }
\end{gathered}
$$

- oxidation state can be used to determine the electron flow in the reaction
- even though they look like them, oxidation states are not ion charges

Rules for Assigning Oxidation States

- Rules are in order of priority

1. free elements have an oxidation state $=0$ - $\mathrm{Na}=0$ and $\mathrm{Cl}_{2}=0$ in $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$
2. monatomic ions have an oxidation state equal to their charge

- $\mathrm{Na}=+1$ and $\mathrm{Cl}=-1$ in NaCl

3. (a) the sum of the oxidation states of all the atoms in a compound is 0
$-\mathrm{Na}=+1$ and $\mathrm{Cl}=-1$ in $\mathrm{NaCl},(+1)+(-1)=0$

Rules for Assigning Oxidation States

3. (b) the sum of the oxidation states of all the atoms in a polyatomic ion equals the charge on the ion
$-\mathrm{N}=+5$ and $\mathrm{O}=-2$ in $\mathrm{NO}_{3}^{-},(+5)+3(-2)=-1$
4. (a) Group I metals have an oxidation state of +1 in all their compounds
$-\mathrm{Na}=+1$ in NaCl
5. (b) Group II metals have an oxidation state of +2 in all their compounds
$-\mathrm{Mg}=+2$ in MgCl_{2}

Rules for Assigning Oxidation States

5. in their compounds, nonmetals have oxidation states according to the table below

- nonmetals higher on the table take priority

Nonmetal	Oxidation State	Example
F	-1	CF_{4}
H	+1	CH_{4}
O	-2	CO_{2}
Group 7A	-1	CCl_{4}
Group 6A	-2	CS_{2}
Group 5A	-3	NH_{3}

Assign an oxidation state to each element in the following

- Br_{2}
- K^{+}
- LiF
- CO_{2}
- $\mathrm{SO}_{4}{ }^{2-}$
- $\mathrm{Na}_{2} \mathrm{O}_{2}$

Oxidation and Reduction Another Definition

- Oxidation occurs when an atom's oxidation state increases during a reaction
- Reduction occurs when an atom's oxidation state decreases during a reaction

Oxidation-Reduction

- The reactant that reduces an element in another reactant is called the reducing agent
- the reducing agent contains the element that is oxidized
- The reactant that oxidizes an element in another reactant is called the oxidizing agent
- the oxidizing agent contains the element that is reduced

$$
\begin{aligned}
& 2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Na}^{+} \mathrm{Cl}^{-}(s) \\
& \mathrm{Na} \text { is oxidized, } \mathrm{Cl} \text { is reduced }
\end{aligned}
$$

Na is the reducing agent, Cl_{2} is the oxidizing agent

$\mathrm{Sn}^{4+}+\mathrm{Ca} \rightarrow \mathrm{Sn}^{2+}+\mathrm{Ca}^{2+}$

$\mathrm{F}_{2}+\mathrm{S} \rightarrow \mathrm{SF}_{4}$

Oxidation Number

- Ag
- Br_{2}
- K^{+}
- NO
- NO_{2}
- $\mathrm{NO}_{3}{ }^{-}$
- FeO_{3}
- KMnO_{4}

$\mathrm{Fe}+\mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Balancing Oxidation-Reduction Reactions

- Law of conservation of mass: the amount of each element present at the beginning of the reaction must be present at the end.
- Conservation of charge: electrons are not lost in a chemical reaction.
- The half-reactions for

$$
\mathrm{Sn}^{2+}(a q)+2 \mathrm{Fe}^{3+}(a q) \rightarrow \mathrm{Sn}^{4+}(a q)+2 \mathrm{Fe}^{2+}(a q)
$$

are
Oxidation: $\mathrm{Sn}^{2+}(a q) \rightarrow \mathrm{Sn}^{4+}(a q)+2 \mathrm{e}^{-}$
Reduction: $2 \mathrm{Fe}^{3+}(a q)+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Fe}^{2+}(a q)$

Exercise: Balance Half Reactions

a. $\mathrm{Sn}^{2+}(a q) \rightarrow \mathrm{Sn}^{4+}(a q)$
b. $\mathrm{TiO}_{2}(s) \rightarrow \mathrm{Ti}^{2+}(a q)$ (acidic condition)
c. $\mathrm{ClO}_{3}^{-}-(a q) \rightarrow \mathrm{Cl}^{-}(a q)$ (acidic condition)

Sample Exercise (Acidic Condition)

a. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{Cl}_{2}(g)$
b. $\mathrm{Cu}(s)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{Cu}^{2+}(a q)+\mathrm{NO}_{2}(g)$

Solution Stoichiometry

- Because molarity relates the moles of solute to the liters of solution, it can be used to convert between amount of reactants and/or products in a chemical reaction

Volume A

Amount A (in moles)

Amount B (in moles)

What volume of 0.150 M KCI is required to completely react with 0.150 L of $0.175 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ in the reaction
$2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(s)+2 \mathrm{KNO}_{3}(\mathrm{aq}) ?$

- 43.8 mL of 0.107 M HCl is needed to neutralize 37.6 mL of $\mathrm{Ba}(\mathrm{OH})_{2}$ solution. What is the molarity of the base?

$$
2 \mathrm{HCl}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Homework

TBA

[^0]: (c) 2011 Pearson Education, Inc.

