Chapter 5 Thermochemistry

Jamie Kim Department of Chemistry Buffalo State College

Goal: estimation of energy change during chemical reaction

Thermochemistry

- Study of energies released or absorbed during chemical reactions.
- Energy: Ability to work

Kinetic Energy (KE): motion of the particle

- Depends on speed (v) and mass (m)
- $KE = \frac{1}{2}mv^{2}$

Potential Energy (PE): Position/location

- Depends on location or position

Law of Conservation of Energy

- Energy can neither be created nor destroyed
- Can only be converted from one form to another
- Total energy of universe is constant

Total
EnergyPotential
EnergyKinetic
Energy

Chemical Energy (PE)

- Potential energy (PE) possessed by chemical compounds
- Stored in chemical bonds
- Breaking bonds
- Forming bonds

Units of Energy

Joule (J)

 KE possessed by 2 kg object moving at speed of 1 m/s (KE = ½mv²)

$$1J = \frac{1}{2} (2kg) \left(\frac{1m}{1s}\right)^2 \qquad 1J = \frac{1kg \cdot m^2}{s^2}$$

- If calculated value is greater than 1000 J, use kJ
- 1 kJ = 1000 J

Units of Energy

calorie (cal)

- Energy needed to raise temperature of 1 g H₂O by 1 °C
 - -1 cal = 4.184 J (exactly)
 - 1 kcal = 1000 cal
 - -1 kcal = 4.184 kJ
 - e.g., for 100 g water from 20 to 30 °C, 100 X 10
 = 1000 cal or 1 kcal is required

Internal Energy (E)

- Sum of energies of all particles in a system
 - **E** = Total energy of a system
 - *E* = Potential + Kinetic = *PE* + *KE*

Change in Internal Energy

$$\Delta \boldsymbol{E} = \boldsymbol{E}_{\text{final}} - \boldsymbol{E}_{\text{initial}}$$

- $-\Delta$ means change
- final initial

 $-\Delta E$ > 0 (energy was absorbed: Endothermic)

 $-\Delta E < 0$ (energy was released: Exothermic)

Universe, System, and Surroundings

Universe = System + Surroundings

Three Types of Systems

1. Open System

- Open to atmosphere
- Gain or lose mass and energy across boundary
- Most reactions done in open systems

2. Closed System

- Not open to atmosphere
- Energy can cross boundary, but mass cannot

Open system

Closed system₁₀

Three Types of Systems

3. Isolated System

- No energy or matter can cross boundary
- Energy and mass are constant

Isolated system

Heat (q)

- Heat (q) gained or lost by an object
 - Directly proportional to temperature change (Δt) it undergoes
 - Adding heat, increases temperature
 - Removing heat, decreases temperature
- Measure changes in temperature to quantify amount of heat transferred

 $\boldsymbol{q} = \boldsymbol{C} \times \Delta t$

• **C** = heat capacity

Learning Check: Heat Capacity

A cup of water is used in an experiment. Its heat capacity is known to be 720 J/°C. How much heat will it absorb if the experimental temperature changed from 19.2 °C to 23.5 °C? $q = C \times \Delta t$

Specific Heat (s)

 Amount of heat needed to raise 1 °C of 1 g substance

- Intensive property (doest not depend on mass)
- Unique to each substance
- Large specific heat means substance needs large amount of heat as it is warmed

Learning Check

 Calculate the specific heat of water if it the heat capacity of 100 g of water is 418 J/°C.

$$s = \frac{C}{m}$$
 $s = \frac{418 \text{ J/}^{\circ}\text{C}}{100. \text{ g}} = 4.18 \text{ J/(g·}^{\circ}\text{C})$

• What is the specific heat of water if heat capacity of 1.00 g of water is 4.18 J/°C?

$$s = \frac{4.18 \text{ J/}^{\circ}\text{C}}{1.00 \text{ g}} = 4.18 \text{ J/(g·}^{\circ}\text{C})$$

 Thus, heat capacity is independent of amount (intrinsic property)

Table 7.1	Specific Heats		
Substance	Specific H	eat, J g ⁻¹ °C ⁻¹ (25 °C)	
Carbon (grap	hite)	0.711	
Copper		0.387	
Ethyl alcohol		2.45	
Gold		0.129	
Granite		0.803	
Iron		0.4498	
Lead		0.128	
Olive oil		2.0	
Silver		0.235	
Water (liquid))	4.184	

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

How much heat is absorbed by a copper penny with mass 3.10 g whose temperature rises from -8.0 °C to 37.0 °C?, specific heat of copper: 0.387

Chemical Reactions

Involves breaking chemical bonds in reactants and formation of chemical bonds in products

Forming Bonds: release energy (heat)

Breaking Bonds: requires energy (heat)

Exothermic Reaction

- Reaction releases heat to surroundings
- Surrounding temperature is raised ([†]T)
- You feel warm

Ex.

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g) + heat$

Endothermic Reaction

- Reaction absorbs heat from surroundings
- Surrounding temperature is lowered (\downarrow T)
- You feel cool
- **Ex.** Photosynthesis

 $6CO_{2}(g) + 6H_{2}O(g) + \text{solar energy (heat)} \rightarrow C_{6}H_{12}O_{6}(s) + 6O_{2}(g)$

Change in Internal Energy (∆E) via Chemical Reaction

From explosion (chemical reaction),

- q = heat
- w = work (expansion of air, sounds, destruction of building, etc)

 $\Delta E = q + w$

If the burning of the fuel in a potato cannon performs 855 J of work on the potato and

produces 1422 J of heat, what is ΔE for the burning of the fuel?

Heats of Reaction (q)

- Amount of heat absorbed or released in chemical reaction
- Calorimeter
 - Instrument used to measure temperature changes (Δt)
 - $-q=C\Delta t$
- Can be measured under two different conditions
 - Constant volume, q_V (limited case)
 - Closed, rigid container
 - Constant pressure, q_P (general case)
 - Open to atmosphere

Work (w)

Work = $-\mathbf{P} \times \Delta \mathbf{V}$

- **P** = pressure (always positive)
- ΔV = change in volume after reaction
- $\Delta \mathbf{V} = V_{\text{final}} V_{\text{initial}}$
- Expansion of ballon
 - Since $V_{final} > V_{initial}$
 - $-\Delta V$ must be positive
 - So expansion work is negative
 - Work done by system to surrounding
 - to convert the units to joules use 101.3 J
 - = 1 atm·L

final

First Law of Thermodynamics

- In an isolated system, energy can be transformed, i.e. changed from one form to another, but cannot be created nor destroyed.
- $\Delta E = q + w$

<i>q</i> is (+)	Heat absorbed by system (IN)	
q is (–)	Heat released by system (OUT)	
<i>w</i> is (+)	Work done on system (IN)	
<i>w</i> is (–)	Work done by system (OUT)	

Your Turn!

A gas releases 3.0 J of heat and then performs 12.2 J of work. What is the change in internal energy of the gas?

A.-15.2 J $\Delta E = q + w$ B.15.2 J $\Delta E = -3.0 \text{ J} + (-12.2 \text{ J})$ C.-9.2 JD.9.2 JE.3.0 J

If a balloon is inflated from 0.100 L to 1.85 L against an external pressure of 1.00 atm, how much work is done? (101.3 J = 1 atm·L)

- Chemists usually do NOT run reactions at constant V
- Usually do reactions in open containers
 Open to atmosphere; constant *P*
- Heat of reaction at constant pressure (q_p) is defined as enthalpy (H)

2Y1427 [RM] © www.visualphotos.com

Enthalpy Change (ΔH)

- $\Delta H = H_{\text{final}} H_{\text{initial}}$
- For chemical reaction,
- $\Delta H = H_{\text{products}} H_{\text{reactants}}$
- Significance of sign of ΔH

Endothermic reaction ($\Delta H > 0$)

- System absorbs energy from surroundings
- $\Delta H > 0$
- **Exothermic** reaction
 - System loses energy to surroundings
 - $\Delta H < 0$

ΔH in Chemical Reactions

Standard condition

Standard Heat of Reaction (ΔH°)

Enthalpy change for reaction at <u>1 atm and 25 °C</u>

Ex.

$N_2(g) + 3H_2(g) \longrightarrow 2 NH_3(g)$ 1.000 mol 3.000 mol 2.000 mol

- 1 mole N₂ and 3 moles of H₂ react to form NH₃ at 25 °C and 1 atm
- 92.38 kJ released (exothermic)
- ∆H= -92.38 kJ

Thermochemical Equation

- Write ΔH° immediately after equation N₂(g) + 3H₂(g) \rightarrow 2NH₃(g) ΔH° = - 92.38 kJ
 - $2N_2(g) + 6H_2(g) \rightarrow 4NH_3(g) \quad \Delta H^\circ = ?$
 - $3N_2(g) + 9H_2(g) \rightarrow 6NH_3(g) \quad \Delta H^\circ = ?$
 - $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \to NH_3(g) \quad \Delta H^\circ = ?$

Learning Check:

Consider the following reaction:

$$\begin{split} 2\mathrm{C}_{2}\mathrm{H}_{2}(g) + 5\mathrm{O}_{2}(g) &\rightarrow 4\mathrm{CO}_{2}(g) + 2\mathrm{H}_{2}\mathrm{O}(g) \\ &\Delta E = -2511 \ \mathrm{kJ} \end{split}$$

The reactants (acetylene and oxygen) have 2511 kJ more energy than products. How many kJ are released for 1 mol C_2H_2 ?

Your Turn!

Based on the reaction

 $\begin{array}{rcl} \mathsf{CH}_4(g) \ + \ 4\mathsf{Cl}_2(g) \ \rightarrow \ \mathsf{CCl}_4(g) \ + \ 4\mathsf{HCl}(g) \\ & \Delta H = - \ 434 \ \mathrm{kJ/mol} \ \mathsf{CH}_4 \end{array}$

What energy change occurs when 1.2 moles of methane reacts?

- A.- $3.6 \times 10^2 \text{ kJ}$ $\Delta H = -434 \text{ kJ/mol} \times 1.2 \text{ mol}$
- B.+5.2 × 10² kJ $\Delta H = -520.8 \text{ kJ}$
- $C.-4.3 \times 10^2 \text{ kJ}$
- $D.+3.6 \times 10^2 \text{ kJ}$
- $E.-5.2 \times 10^{2} \text{ kJ}$

Running Thermochemical Equations in Reverse

Consider

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ $\Delta H^\circ = -\ 802.3 \text{ kJ}$

- Reverse thermochemical equation
- Must change sign of ΔH $CO_2(g) + 2H_2O(g) \rightarrow CH_4(g) + 2O_2(g)$ $\Delta H^\circ = 802.3 \text{ kJ}$

Multiple Paths; Same ∆H°

Hess's Law of Heat Summation

– For any reaction that can be written into steps, value of ΔH° for reactions = sum of ΔH° values of each individual step

Step 1: $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$ $\Delta H^\circ = -110.5 \text{ kJ}$ Step 2: $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = -283.0 \text{ kJ}$

Step 1 + Step 2 $C(s) + O_2(g) \rightarrow CO_2(g) \Delta H^\circ = ?$

$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g) \Delta H^\circ = ?$

Step 1: $N_2(g) + O_2(g) \rightarrow 2NO(g)$ $\Delta H^\circ = 180. \text{ kJ}$ Step 2: $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ $\Delta H^\circ = -112$

Given the following information: $Cu(s) + Cl_2(g) \rightarrow CuCl_2(s)$ $\Delta H^\circ = -206 \text{ kJ}$ $2 Cu(s) + Cl_2(g) \rightarrow 2 CuCl(s)$ $\Delta H^\circ = -36 \text{ kJ}$

Calculate the ΔH° for the reaction below: $Cu(s) + CuCl_{2}(s) \rightarrow 2 CuCl(s) \qquad \Delta H^{\circ} = ? kJ$

Your Turn!

Which of the following is a statement of Hess's Law?

A. Δ H for a reaction in the forward direction is equal to Δ H for the reaction in the reverse direction.

 $B.\Delta H$ for a reaction depends on the physical states of the reactants and products.

C.If a reaction takes place in steps, ΔH for the reaction will be the sum of ΔHs for the individual steps.

D.If you multiply a reaction by a number, you multiply ΔH by the same number.

E. Δ H for a reaction in the forward direction is equal in magnitude and opposite in sign to Δ H for the reaction in the reverse direction.

Standard State

 Most stable form and physical state of element at 1 atm (1 bar) and 25 °C (298 K)

element	Standard state
0	O ₂ (<i>g</i>)
С	C _{gr} (s)
Н	$H_2(g)$
AI	AI(s)
Ne	Ne(<i>g</i>)

Note: All ΔH_f° of elements in their std states = 0

Forming element from itself.

See Appendix in back of textbook

Uses of Standard Enthalpy (Heat) of Formation, ΔH_f°

From definition of ΔH_f° , can write balanced equations directly

 $\Delta H_{f}^{\circ} \text{ of } C_{2}H_{5}OH(\ell) \text{: from table 7-2}$ $2C(s, gr) + 3H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow C_{2}H_{5}OH(\ell)$ $\Delta H_{f}^{\circ} = -277.03 \text{ kJ/mol}$ $\Delta H_{f}^{\circ} \text{ of } Fe_{2}O_{3}(s) \text{: from table 7-2}$ $2Fe(s) + \frac{3}{2}O_{2}(g) \rightarrow Fe_{2}O_{3}(s) \quad \Delta H_{f}^{\circ} = -822.2 \text{ kJ/mol}$

TABLE 6.5 Standard Enthalpies (or Heats) of Formation, $\Delta H_{\rm f}^{\circ}$, at 298 K							
Formula	$\Delta H_{\mathrm{f}}^{\mathrm{o}}$ (kJ/mol)	Formula	$\Delta H_{\rm f}^{\rm o}$ (kJ/mol)	Formula	$\Delta H_{\mathrm{f}}^{\mathrm{o}}$ (kJ/mol)		
Bromine		C ₃ H ₈ O(<i>I</i> , isopropanol)	-318.1	Oxygen			
Br(g)	111.9	C ₆ H ₆ (/)	49.1	$O_2(g)$	0		
Br ₂ (/)	0	C ₆ H ₁₂ O ₆ (<i>s</i> , glucose)	-1273.3	0 ₃ (<i>g</i>)	142.7		
HBr(g)	-36.3	C ₁₂ H ₂₂ O ₁₁ (<i>s</i> , sucrose)	-2226.1	$H_2O(g)$	-241.8		
Calcium		Chlorine		H ₂ O(/)	-285.8		
Ca(<i>s</i>)	0	CI(<i>g</i>)	121.3	Silver			
CaO(<i>s</i>)	-634.9	$Cl_2(g)$	0	Ag(<i>s</i>)	0		
$CaCO_3(s)$	-1207.6	HCI(g)	-92.3	AgCI(s)	-127.0		
Carbon		Fluorine		Sodium			
C(<i>s</i> , graphite)	0	F(<i>g</i>)	79.38	Na(<i>s</i>)	0		
C(<i>s</i> , diamond)	1.88	$F_2(g)$	0	Na(<i>g</i>)	107.5		
CO(g)	-110.5	HF(<i>g</i>)	-273.3	NaCI(s)	-411.2		
$CO_2(g)$	-393.5	Hydrogen		Na ₂ CO ₃ (<i>s</i>)	-1130.7		
$CH_4(g)$	-74.6	H(<i>g</i>)	218.0	NaHCO ₃ (s)	-950.8		
CH ₃ OH(/)	-238.6	$H_2(g)$	0	Sulfur			
$C_2H_2(g)$	227.4	Nitrogen		S ₈ (<i>s</i> , rhombic)	0		
$C_2H_4(g)$	52.4	$N_2(g)$	0	S ₈ (<i>s</i> , monoclinic)	0.3		
$C_2H_6(g)$	-84.68	$NH_3(g)$	-45.9	$SO_2(g)$	-296.8		
C ₂ H ₅ OH(/)	-277.6	$NH_4NO_3(s)$	-365.6	$SO_3(g)$	-395.7		
C ₃ H ₈ (<i>g</i>)	-103.85	NO(g)	91.3	H ₂ SO ₄ (/)	-814.0		
C ₃ H ₆ O(<i>I</i> , acetone)	-248.4	$N_2O(g)$	81.6				

© 2011 Pearson Education, Inc.

Your Turn!

What is the reaction that corresponds to the standard enthalpy of formation of NaHCO₃(*s*), $\Delta H_f^{\circ} = -947.7 \text{ kJ/mol}$?

a. $Na(s) + \frac{1}{2}H_2(g) + \frac{3}{2}O_2(g) + C(s, gr) \rightarrow NaHCO_3(s)$

- b. $Na^{+}(g) + H^{+}(g) + 3O^{2-}(g) + C^{4+}(g) \rightarrow NaHCO_{3}(s)$
- c. Na⁺(aq) + H⁺(aq) + $3O^{2-}(aq) + C^{4+}(aq) \rightarrow \text{NaHCO}_3(s)$
- d. NaHCO₃(s) \rightarrow Na(s) + $\frac{1}{2}H_2(g) + \frac{3}{2}O_2(g) + C(s, gr)$
- e. Na⁺(aq) + HCO₃⁻(aq) \rightarrow NaHCO₃(s)

Calculate ΔH°_{rxn} Using ΔH°_{f}

Calculate ΔH°_{rxn} using ΔH°_{f} data for the reaction

$SO_3(g) \longrightarrow SO_2(g) + \frac{1}{2}O_2(g)$

- 1. Add ΔH_f° for each product times its coefficient
- 2. Subtract ΔH_f° for each reactant times its coefficient.
 - $\Delta \mathcal{H}_{rxn}^{\circ} = \Delta \mathcal{H}_{f}^{\circ} \big(\mathsf{SO}_{2}(g) \big) + \frac{1}{2} \Delta \mathcal{H}_{f}^{\circ} \big(\mathsf{O}_{2}(g) \big) \Delta \mathcal{H}_{f}^{\circ} \big(\mathsf{SO}_{3}(g) \big)$

 $\Delta H_{rxn}^{\circ} = -297 \, \text{kJ/mol} + \frac{1}{2} (0 \, \text{kJ/mol}) - (-396 \, \text{kJ/mol})$

$\Delta H^{o}_{rxn} = 99 \ kJ/mol$, endothermic

Learning CheckCalculate ΔH for this reaction using ΔH_f° data. $CO_2(g) + 2H_2O(\ell) \rightarrow 2O_2(g) + CH_4(g)$ $\Delta H_f^{\circ} -393.5 -285.8 0 -74.8$

Calculate the ΔH° for decomposing 10.0 g of limestone, CaCO₃, under standard conditions. CaCO₃(s) \rightarrow CaO(s) + O₂(g)

Material	$\Delta H_{\rm f}^{\circ}$, kJ/mol
$CaCO_3(s)$	-1207.6
$O_2(g)$	0
CaO(s)	-634.9

TBA