Chapter 5 Thermochemistry

Jamie Kim

Department of Chemistry Buffalo State College

Goal: estimation of energy change during chemical reaction

Thermochemistry

- Study of energies released or absorbed during chemical reactions.
- Energy: Ability to work

Kinetic Energy (KE): motion of the particle

- Depends on speed (v) and mass (m)
- KE = $1 / 2 m v^{2}$

Potential Energy (PE): Position/location

- Depends on location or position

Law of Conservation of Energy

- Energy can neither be created nor destroyed
- Can only be converted from one form to another
- Total energy of universe is constant
$\underset{\text { Energy }}{\text { Total }}=\begin{gathered}\text { Potential } \\ \text { Energy }\end{gathered}+\begin{gathered}\text { Kinetic } \\ \text { Energy }\end{gathered}$

Chemical Energy (PE)

- Potential energy (PE) possessed by chemical compounds
- Stored in chemical bonds
- Breaking bonds
- Forming bonds

ethanol

Units of Energy

Joule (J)

- KE possessed by 2 kg object moving at speed of $1 \mathrm{~m} / \mathrm{s}\left(\mathrm{KE}=\mathbf{1} / \mathbf{2} \mathrm{mv}^{2}\right)$

$$
1 \boldsymbol{J}=\frac{1}{2}(2 k g)\left(\frac{1 m}{1 s}\right)^{2} \quad 1 \boldsymbol{J}=\frac{1 \mathrm{~kg} \cdot \boldsymbol{m}^{2}}{s^{2}}
$$

- If calculated value is greater than 1000 J , use kJ
- $1 \mathrm{~kJ}=1000 \mathrm{~J}$

Units of Energy

calorie (cal)

- Energy needed to raise temperature of 1 g $\mathrm{H}_{2} \mathrm{O}$ by $1^{\circ} \mathrm{C}$
- $1 \mathrm{cal}=4.184 \mathrm{~J} \quad$ (exactly)
$-1 \mathrm{kcal}=1000 \mathrm{cal}$
$-1 \mathrm{kcal}=4.184 \mathrm{~kJ}$
- e.g., for 100 g water from 20 to $30^{\circ} \mathrm{C}, 100 \mathrm{X} 10$
$=1000 \mathrm{cal}$ or 1 kcal is required

Internal Energy (E)

- Sum of energies of all particles in a system
$\boldsymbol{E}=$ Total energy of a system
$E=$ Potential + Kinetic $=P E+K E$
Change in Internal Energy

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}
$$

$-\Delta$ means change

- final - initial
- $\Delta E>0$ (energy was absorbed: Endothermic)
$-\Delta E<0$ (energy was released: Exothermic)

Universe, System, and Surroundings

> Universe = System + Surroundings

Surroundings
(flask and subtances
in contact with outside
System
(contents)

Three Types of Systems

1. Open System

- Open to atmosphere
- Gain or lose mass and energy across boundary

Open system

- Most reactions done in open systems

2. Closed System

- Not open to atmosphere
- Energy can cross boundary, but mass cannot

Closed system

Three Types of Systems

3. Isolated System

- No energy or matter can cross boundary
- Energy and mass are constant

Isolated system

Heat (q)

- Heat (q) gained or lost by an object
- Directly proportional to temperature change (Δt) it undergoes
- Adding heat, increases temperature
- Removing heat, decreases temperature
- Measure changes in temperature to quantify amount of heat transferred

$$
q=C \times \Delta t
$$

- $\boldsymbol{C}=$ heat capacity

Learning Check: Heat Capacity

A cup of water is used in an experiment. Its heat capacity is known to be $720 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. How much heat will it absorb if the experimental temperature changed from $19.2^{\circ} \mathrm{C}$ to 23.5 ${ }^{\circ} \mathrm{C}$?

$$
q=C \times \Delta t
$$

Specific Heat (s)

- Amount of heat needed to raise $1^{\circ} \mathrm{C}$ of 1 g substance
$s=\frac{C(\text { heat capacity })}{\operatorname{mass}(g)}$
- Intensive property (doest not depend on mass)
- Unique to each substance
- Large specific heat means substance needs large amount of heat as it is warmed

Learning Check

- Calculate the specific heat of water if it the heat capacity of 100 g of water is $418 \mathrm{~J} /{ }^{\circ} \mathrm{C}$.
$\boldsymbol{s}=\frac{\boldsymbol{C}}{\boldsymbol{m}}$

$$
\boldsymbol{s}=\frac{418 \mathrm{~J} /{ }^{\circ} \mathrm{C}}{100 . \mathrm{g}}=4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)
$$

- What is the specific heat of water if heat capacity of 1.00 g of water is $4.18 \mathrm{~J} /{ }^{\circ} \mathrm{C}$?

$$
\boldsymbol{s}=\frac{4.18 \mathrm{~J} /{ }^{\circ} \mathrm{C}}{1.00 \mathrm{~g}}=4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)
$$

- Thus, heat capacity is independent of amount (intrinsic property)

Table 7.1
 Specific Heats

Substance

Specific Heat, J g ${ }^{-1}{ }^{\circ} \mathrm{C}^{-1}\left(25^{\circ} \mathrm{C}\right)$

Carbon (graphite)
Copper
Ethyl alcohol
Gold
Granite
Iron
Lead
Olive oil
Silver
Water (liquid)
0.711
0.387
2.45
0.129
0.803
0.4498
0.128
2.0
0.235
4.184

How much heat is absorbed by a copper penny with mass 3.10 g whose temperature rises from $-8.0^{\circ} \mathrm{C}$ to $37.0^{\circ} \mathrm{C}$?, specific heat of copper: 0.387

Chemical Reactions

Involves breaking chemical bonds in reactants and formation of chemical bonds in products

Forming Bonds: release energy (heat)

Breaking Bonds: requires energy (heat)

Exothermic Reaction

Surroundings
heat
System

- Reaction releases heat to surroundings
- Surrounding temperature is raised (\uparrow T)
- You feel warm

Ex.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)+\text { heat }
$$

Endothermic Reaction

Surroundings
heat
System

- Reaction absorbs heat from surroundings
- Surrounding temperature is lowered (\downarrow T)
- You feel cool

Ex. Photosynthesis
$6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ solar energy (heat) \rightarrow

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2} 7(g)
$$

Change in Internal Energy ($\Delta \mathrm{E}$) via Chemical Reaction

From explosion (chemical reaction), q = heat
w = work (expansion of air, sounds, destruction of building, etc)

$$
\Delta E=q+w
$$

If the burning of the fuel in a potato cannon performs 855 J of work on the potato and produces 1422 J of heat, what is ΔE for the burning of the fuel?

Heats of Reaction (q)

- Amount of heat absorbed or released in chemical reaction
- Calorimeter
- Instrument used to measure temperature changes ($\Delta \mathrm{t}$)
$-q=C \Delta t$
- Can be measured under two different conditions
- Constant volume, q_{v} (limited case)
- Closed, rigid container
- Constant pressure, q_{p} (general case)
- Open to atmosphere

Work (w)

Work $=-P \times \Delta V$

- $\mathbf{P}=$ pressure (always positive)
- $\Delta \mathbf{V}=$ change in volume after reaction
- $\Delta \mathbf{V}=\mathrm{V}_{\text {final }}-\mathrm{V}_{\text {initial }}$
- Expansion of ballon
- Since $\mathrm{V}_{\text {final }}>\mathrm{V}_{\text {initial }}$
$-\Delta \mathbf{V}$ must be positive
- So expansion work is negative
- Work done by system to surrounding
- to convert the units to joules use 101.3 J
$=1 \mathrm{~atm} \cdot \mathrm{~L}$

First Law of Thermodynamics

- In an isolated system, energy can be transformed, i.e. changed from one form to another, but cannot be created nor destroyed.
- $\Delta E=q+w$

q is $(+)$	Heat absorbed by system (IN)
q is (-)	Heat released by system (OUT)
w is $(+)$	Work done on system (IN)
w is $(-)$	Work done by system (OUT)

Your Turn!

A gas releases 3.0 J of heat and then performs 12.2 J of work. What is the change in internal energy of the gas?
A.-15.2 J
$\Delta E=q+w$
B.15.2 J
$\Delta E=-3.0 \mathrm{~J}+(-12.2 \mathrm{~J})$
C.-9.2 J
D.9.2 J
E.3.0 J

If a balloon is inflated from 0.100 L to 1.85 L against an external pressure of 1.00 atm , how much work is done? $(101.3 \mathrm{~J}=1 \mathrm{~atm} \cdot \mathrm{~L})$

Enthalpy (H)

- Chemists usually do NOT run reactions at constant V
- Usually do reactions in open containers -Open to atmosphere; constant \boldsymbol{P}
- Heat of reaction at constant pressure $\left(\boldsymbol{q}_{\boldsymbol{p}}\right)$ is defined as enthalpy (H)

Enthalpy Change (ΔH)

- $\Delta \boldsymbol{H}=\boldsymbol{H}_{\text {final }}-H_{\text {initial }}$
- For chemical reaction,
- $\Delta H=H_{\text {products }}-H_{\text {reactants }}$
- Significance of sign of ΔH

Endothermic reaction ($\Delta H>0$)

- System absorbs energy from surroundings
- $\Delta H>0$

Exothermic reaction

- System loses energy to surroundings
- $\Delta H<0$

ΔH in Chemical Reactions

Standard condition
 Standard Heat of Reaction $\left(\Delta H^{\circ}\right)$

- Enthalpy change for reaction at 1 atm and $25^{\circ} \mathrm{C}$

Ex.
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)$
$1.000 \mathrm{~mol} 3.000 \mathrm{~mol} \quad 2.000 \mathrm{~mol}$

- 1 mole N_{2} and 3 moles of H_{2} react to form NH_{3} at 25 ${ }^{\circ} \mathrm{C}$ and 1 atm
- 92.38 kJ released (exothermic)
- $\Delta \mathrm{H}=-92.38 \mathrm{~kJ}$

Thermochemical Equation

- Write $\Delta \boldsymbol{H}^{\circ}$ immediately after equation $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g) \quad \Delta \boldsymbol{H}^{\circ}=-92.38 \mathrm{~kJ}$

$$
\begin{array}{ll}
2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2}(g) \rightarrow 4 \mathrm{NH}_{3}(g) & \Delta \boldsymbol{H}^{\circ}=? \\
3 \mathrm{~N}_{2}(g)+9 \mathrm{H}_{2}(g) \rightarrow 6 \mathrm{NH}_{3}(g) & \Delta \boldsymbol{H}=? \\
1 / 2 \mathrm{~N}_{2}(g)+3 / 2 \mathrm{H}_{2}(g) \rightarrow \mathrm{NH}_{3}(g) & \Delta \boldsymbol{H}^{\circ}=?
\end{array}
$$

Learning Check:

Consider the following reaction:
$2 \mathrm{C}_{2} \mathrm{H}_{2}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$

$$
\Delta E=-2511 \mathrm{~kJ}
$$

The reactants (acetylene and oxygen) have 2511 kJ more energy than products. How many kJ are released for $1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}$?

Your Turn!

Based on the reaction
$\mathrm{CH}_{4}(g)+4 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{CCl}_{4}(g)+4 \mathrm{HCl}(g)$

$$
\Delta H=-434 \mathrm{~kJ} / \mathrm{mol} \mathrm{CH}_{4}
$$

What energy change occurs when 1.2 moles of methane reacts?
A. $-3.6 \times 10^{2} \mathrm{~kJ} \quad \Delta \mathrm{H}=-434 \mathrm{~kJ} / \mathrm{mol} \times 1.2 \mathrm{~mol}$ B. $+5.2 \times 10^{2} \mathrm{~kJ} \quad \Delta \mathrm{H}=-5 \underline{2} 0.8 \mathrm{~kJ}$
C. $-4.3 \times 10^{2} \mathrm{~kJ}$
D. $+3.6 \times 10^{2} \mathrm{~kJ}$
E. $-5.2 \times 10^{2} \mathrm{~kJ}$

Running Thermochemical Equations in Reverse

Consider
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$

$$
\Delta H^{\circ}=-802.3 \mathrm{~kJ}
$$

- Reverse thermochemical equation
- Must change sign of $\Delta \mathrm{H}$
$\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$

$$
\Delta H^{\circ}=802.3 \mathrm{~kJ}
$$

Multiple Paths; Same $\Delta \mathrm{H}^{\circ}$

Hess's Law of Heat Summation

- For any reaction that can be written into steps, value of $\Delta \mathrm{H}^{\circ}$ for reactions $=$ sum of $\Delta \mathrm{H}^{\circ}$ values of each individual step

Step 1: $\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \quad \Delta H^{\circ}=-110.5 \mathrm{~kJ}$
Step 2: $\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta H^{\circ}=-283.0 \mathrm{~kJ}$

Step 1 + Step 2

$$
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) \Delta H^{\circ}=?
$$

$\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g) \Delta \mathrm{H}^{\circ}=?$

Step 1: $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)$
$\Delta H^{\circ}=180 . \mathrm{kJ}$ Step 2: $2 \mathrm{NO}_{(g)}+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g) \quad \Delta \mathrm{H}^{\circ}=-112$

Given the following information:

$$
\begin{array}{ll}
\mathrm{Cu}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{~s}) & \Delta H^{\circ}=-206 \mathrm{~kJ} \\
2 \mathrm{Cu}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CuCl}(\mathrm{~s}) & \Delta H^{\circ}=-36 \mathrm{~kJ}
\end{array}
$$

Calculate the ΔH° for the reaction below:
$\mathrm{Cu}(\mathrm{s})+\mathrm{CuCl}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{CuCl}(\mathrm{s}) \quad \Delta H^{\circ}=? \mathrm{~kJ}$

Your Turn!

Which of the following is a statement of Hess's Law?
A. $\Delta \mathrm{H}$ for a reaction in the forward direction is equal to $\Delta \mathrm{H}$ for the reaction in the reverse direction.
B. $\Delta \mathrm{H}$ for a reaction depends on the physical states of the reactants and products.
C.If a reaction takes place in steps, $\Delta \mathrm{H}$ for the reaction will be the sum of $\Delta \mathrm{H}$ s for the individual steps.
D. If you multiply a reaction by a number, you multiply $\Delta \mathrm{H}$ by the same number.
$\mathrm{E} . \Delta \mathrm{H}$ for a reaction in the forward direction is equal in magnitude and opposite in sign to $\Delta \mathrm{H}$ for the reaction in the reverse direction.

Standard State

- Most stable form and physical state of element at 1 atm (1 bar) and $25^{\circ} \mathrm{C}(298 \mathrm{~K})$

element	Standard state
O	$\mathrm{O}_{2}(g)$
C	$\mathrm{C}_{\mathrm{gr}}(s)$
H	$\mathrm{Hr}_{2}(g)$
Al	$\mathrm{Al}(s)$
Ne	$\mathrm{Ne}(g)$

Note: All $\Delta H_{f}{ }^{\circ}$ of elements in their std states $=0$

Forming element from itself.

- See Appendix in back of textbook

Uses of Standard Enthalpy (Heat) of Formation, ΔH_{f}°

From definition of ΔH_{f}°, can write balanced equations directly
ΔH_{f}° of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)$: from table 7-2
$2 \mathrm{C}(\mathrm{s}, \mathrm{gr})+3 \mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(t)$

$$
\Delta H_{f}^{\circ}=-277.03 \mathrm{~kJ} / \mathrm{mol}
$$

ΔH_{f}° of $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$: from table 7-2
$2 \mathrm{Fe}(s)+{ }^{3 / 2} \mathrm{O}_{2}(g) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(s) \quad \Delta H_{f}^{\circ}=-822.2 \mathrm{~kJ} / \mathrm{mol}$

TABLE 6.5 Standard Enthalpies (or Heats) of Formation, $\Delta \boldsymbol{H}_{\mathrm{f}}^{\circ}$, at 298 K

Formula	$\Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	Formula	$\Delta \boldsymbol{H}_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	Formula	$\Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
Bromine		$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ (l, isopropanol)	-318.1	Oxygen	
$\operatorname{Br}(\mathrm{g})$	111.9	$\mathrm{C}_{6} \mathrm{H}_{6}$ (/)	49.1	$\mathrm{O}_{2}(\mathrm{~g})$	0
$\mathrm{Br}_{2}(/)$	0	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s$, glucose)	-1273.3	$\mathrm{O}_{3}(\mathrm{~g})$	142.7
$\mathrm{HBr}(\mathrm{g})$	-36.3	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(s$, sucrose)	-2226.1	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8
Calcium		Chlorine		$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.8
$\mathrm{Ca}(\mathrm{s})$	0	$\mathrm{Cl}(\mathrm{g})$	121.3	Silver	
$\mathrm{CaO}(s)$	-634.9	$\mathrm{Cl}_{2}(g)$	0	$\mathrm{Ag}(\mathrm{s})$	0
$\mathrm{CaCO}_{3}(s)$	-1207.6	$\mathrm{HCl}(\mathrm{g})$	-92.3	$\mathrm{AgCl}(s)$	-127.0
Carbon		Fluorine		Sodium	
C (s, graphite)	0	$\mathrm{F}(\mathrm{g})$	79.38	$\mathrm{Na}(\mathrm{s})$	0
C(s, diamond)	1.88	$\mathrm{F}_{2}(\mathrm{~g})$	0	$\mathrm{Na}(g)$	107.5
$\mathrm{CO}(\mathrm{g})$	-110.5	HF(g)	-273.3	$\mathrm{NaCl}(\mathrm{s})$	-411.2
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	Hydrogen		$\mathrm{Na}_{2} \mathrm{CO}_{3}(s)$	-1130.7
$\mathrm{CH}_{4}(\mathrm{~g})$	-74.6	$\mathrm{H}(\mathrm{g})$	218.0	$\mathrm{NaHCO}_{3}(s)$	-950.8
$\mathrm{CH}_{3} \mathrm{OH}(/)$	-238.6	$\mathrm{H}_{2}(\mathrm{~g})$	0	Sulfur	
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	227.4	Nitrogen		$\mathrm{S}_{8}(s$, rhombic)	0
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	52.4	$\mathrm{N}_{2}(\mathrm{~g})$	0	$\mathrm{S}_{8}(s$, monoclinic)	0.3
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	-84.68	$\mathrm{NH}_{3}(\mathrm{~g})$	-45.9	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.8
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(/)$	-277.6	$\mathrm{NH}_{4} \mathrm{NO}_{3}(s)$	-365.6	$\mathrm{SO}_{3}(\mathrm{~g})$	-395.7
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$	-103.85	$\mathrm{NO}(g)$	91.3	$\mathrm{H}_{2} \mathrm{SO}_{4}(/)$	-814.0
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}(1$, acetone)	-248.4	$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$	81.6		

[^0]
Your Turn!

What is the reaction that corresponds to the standard enthalpy of formation of $\mathrm{NaHCO}_{3}(s)$, $\Delta H_{f}^{\circ}=-947.7 \mathrm{~kJ} / \mathrm{mol}$?
a. $\mathrm{Na}(s)+1 / 2 \mathrm{H}_{2}(g)+{ }^{3} / 2 \mathrm{O}_{2}(g)+\mathrm{C}(s, g r) \rightarrow \mathrm{NaHCO}_{3}(s)$
b. $\mathrm{Na}^{+}(g)+\mathrm{H}^{+}(g)+3 \mathrm{O}^{2-}(g)+\mathrm{C}^{4+}(g) \rightarrow \mathrm{NaHCO}_{3}(s)$
c. $\mathrm{Na}^{+}(a q)+\mathrm{H}^{+}(a q)+3 \mathrm{O}^{2-}(\mathrm{aq})+\mathrm{C}^{4+}(a q) \rightarrow \mathrm{NaHCO}_{3}(s)$ d. $\mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{Na}(s)+1 / 2 \mathrm{H}_{2}(g)+3 / 2 \mathrm{O}_{2}(g)+\mathrm{C}(s, g r)$ e. $\mathrm{Na}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q) \rightarrow \mathrm{NaHCO}_{3}(s)$

Calculate $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ Using ΔH_{f}°

Calculate $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ using $\Delta \boldsymbol{H}_{f}^{\circ}$ data for the reaction

$$
\mathrm{SO}_{3}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

1. Add ΔH_{f}° for each product times its coefficient
2. Subtract $\Delta \boldsymbol{H}_{f}^{\circ}$ for each reactant times its coefficient.
$\Delta H_{\mathrm{rxn}}^{\circ}=\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{SO}_{2}(g)\right)+1 / 2 \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}(g)\right)-\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{SO}_{3}(g)\right)$
$\Delta H_{\mathrm{rxn}}^{\circ}=-297 \mathrm{~kJ} / \mathrm{mol}+1 / 2(0 \mathrm{~kJ} / \mathrm{mol})-(-396 \mathrm{~kJ} / \mathrm{mol})$
$\Delta H^{\circ}{ }_{r x n}=99 \mathrm{~kJ} / \mathrm{mol}$, endothermic

Learning Check

Calculate ΔH for this reaction using ΔH_{f}° data.

$$
\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow 2 \mathrm{O}_{2}(g)+\mathrm{CH}_{4}(g)
$$

$\Delta H_{f}^{\circ}-393.5 \quad-285.8$
$0-74.8$

Calculate the ΔH° for decomposing 10.0 g of limestone, CaCO_{3}, under standard conditions.
$\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{O}_{2}(g)$

Material	$\Delta H_{\mathrm{f}}^{\circ}, \mathrm{kJ} / \mathrm{mol}$
$\mathrm{CaCO}_{3}(\mathrm{~s})$	-1207.6
$\mathrm{O}_{2}(\mathrm{~g})$	0
$\mathrm{CaO}(\mathrm{s})$	-634.9

Homework

TBA

[^0]: © 2011 Pearson Education, Inc.

