CHE680 Advanced Analytical Chemistry Chapter 11

Jamie Kim Department of Chemistry Buffalo State College

Interpretation of Data: Basic Idea

1. Qualitative analysis

If you had two different substances in the mixture (X and Y), you could say nothing about their relative amounts.

2. Quantitative analysis

The area under the peak is proportional to the amount of X which has passed the detector, and this area can be calculated automatically by the computer linked to the display.

retention time

If the solution of X was less concentrated, the area under the peak would be less - although the retention time will still be the same.

Qualitative Analysis: Identification of Target Compounds

Can't Believe?

Quantitative Analysis by Chromatography

 $m_i = RF_i \cdot A_i$

- m_i : quantity of compound *i* injected into the column
- *RF_i*: Absolute response factor for compound *i*
- A_i: area of the eluting peak for compound i

Problem

- Difficult to know exact injected quantity of compound *i* (instrumental error, personal error, etc)
- *RF_i*: depends on the compounds, instruments, and concentrations
- Recovery of a target compound during preliminary sample preparation processes is not ~100%

Quantification Calculation

- Percent
- External standard (ESD)
- Internal standard (ISD)
- Standard addition

Percent (%): Uncalibrated Procedure

<u>Compound</u>	Integrated Area	<u>Area %</u>	
A	280	26.2	
В	250	23.4	
С	220	20.6	
D	320	29.9	
<u>Total</u>	<u>1070</u>	<u>100</u>	

- Assumes that all compounds respond equally to the detector
- Area % is close to the relative amounts of each component

Reference Sample

Problem

- Each sample does not respond equally to the detector
- Absolute response factor (RF)

$m_i = RF_iA_i$

- m_i : quantity of compound *i* injected into the column
- *RF*_{*i*}: Absolute response factor for compound *i*
- A_i: area of the eluting peak for compound i

Percent (%): Reference (25 mg per Each Compound)

<u>Compound</u>	Integrated Area	<u>Area %</u>	<u>RF</u>
A	250	20.2	25/250=0.100
В	290	23.4	25/290=0.086
С	330	26.6	25/330=0.076
D	370	29.8	25/370=0.068
Total	1240	100	

 $RF_i = m_i/A_i$

 $Unknown = RF^*A$

Percent (%): Unknown Sample

<u>Compound</u>	<u>Area</u>	RF	Amount (mg)
A	140	0.100	140*0.100 = 14.0
В	360	0.086	360*0.086 = 31.0
С	230	0.076	230*0.076 = 17.5
D	420	0.068	420*0.068 = 28.6

- $Unknown = RF^*A$
- A larger peak does mean a larger amount
- *RF* is constant for all concentrations?

 $m_{ref} = RF \cdot A_{ref}$

- *m*_{ref}: known quantity of an analyte injected into the column
- *RF*: Absolute response factor of an analyte
- A_{ref}: area of the eluting peak

$$m_{\text{sample}} = RF \cdot A_{\text{sample}}$$

Problem

- Difficult to know exact injected quantity of an analyte (instrumental error, personal error, etc)
- *RF*: should be constant over the concentrations

Calibration Curve Using Multiple External Standards

Internal Standard

Conditions

- Why?: Quantity of samples vary (auto-injector), instrument is not stable (detector), etc.
- Internal standard (ISD): a known amount of compound, different from analyte, that is added to the unknown sample.
- Must be pure and not present initially in the sample
- Its elution peak must be well resolved from the other compounds in the sample.
- Retention time should be close to that of target compound (physically similar, but should be different)
- Should be chemically inert to all compounds in a sample.
- Chemically/physically stable over the time

$$m_{IS} = RF_{IS}A_{IS}$$

- *m*_{IS}: known quantity of internal standard (IS) injected into the column
- *RF*_{/S}: Absolute response factor of IS
- A_{IS} : area of the eluting peak for IS

$$m_1 = RF_1A_1$$

- *m*₁: known quantity of an analyte 1 injected into the column
- *RF*₁: Absolute response factor of an analyte 1
- A_{IS} : area of the eluting peak for an analyte 1

- Regardless of the amount of sample injected, the ratio of m_{IS}/m₁ is same.
- Question: is RF_{IS}/RF_1 is always constant over the concentration?

Bisphenol A (BPA)

Bisphenol C (BPC)

min

 C_{IS}/C_1

			Peak area of	Peak Area of		
Sample	Analyte	ISD	Analyte	ISD	P(A)/P(ISE	D)
1	0.0	<mark>5</mark> 0.30	18.80	50.00	0.376	
2	0.:	<mark>0</mark> 0.30	48.10	64.10	0.75039	
3	0.3	<mark>5</mark> 0.30	63.40	55.10	1.150635	
4	0.3	<mark>0</mark> 0.30	63.20	42.70	1.480094	
5	0.3	<mark>5</mark> 0.30	93.60	53.80	1.739777	
6	unknown	0.30	58.90	49.40	1.192308	
	y = ax + b					
	a =	6.914515129				
	b =	0.062201901				

Internal Standard Curve

Matrix Addition

- Good for samples contain other than analyte which affects signals from analyte (matrix effect)
- Cocaine samples of same concentration in methanol and blood produce different intensities in mass spectrum
- Deuterated cocaine can be used as an internal standard (cocaine-d3)

Matrix Effect

