CHE680

Advanced Analytical Chemistry Lecture 2

Jamie Kim
Department of Chemistry Buffalo State College

Question 1

Can you make it? How?
Which tool(s) do you need?
$98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$

$1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

SI -Derived Units

Table 1-2 SI-derived units with special names

Quantity	Unit	Symbol	Expression in terms of other units	Expression in terms of SI base units
Frequency	hertz	Hz		$1 / \mathrm{s}$
Force	newton	N		$\mathrm{m} \cdot \mathrm{kg} / \mathrm{s}^{2}$
Pressure	pascal	Pa	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{~kg} /\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)$
Energy, work, quantity of heat	joule	J	$\mathrm{N} \cdot \mathrm{m}$	$\mathrm{m} \cdot \mathrm{kg} / \mathrm{s}^{2}$
Power, radiant flux	watt	W	J / s	$\mathrm{m} \cdot \mathrm{kg} / \mathrm{s}^{3}$
Quantity of electricity, electric charge	coulomb	C		$\mathrm{s} \cdot \mathrm{A}$
Electric potential, potential difference, electromotive force	volt	V	W / A	$\mathrm{m} \cdot \mathrm{kg} /\left(\mathrm{s}^{3} \cdot \mathrm{~A}\right)$
Electric resistance	ohm	Ω	V / A	m
Electric capacitance	farad	F	C / V	$\mathrm{m}^{2} \cdot \mathrm{~kg} /\left(\mathrm{s}^{3} \cdot \mathrm{~A}^{2}\right)$

speed (v) = distance/time $=\mathrm{m} / \mathrm{s}$ acceleration (a): [speed change]/time $=[\mathrm{m} / \mathrm{s}] / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}$ force $(F)=($ mass $) \cdot($ acceleration $)=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$ pressure $(\mathrm{P})=($ force $) /($ area $)=\left(\mathrm{kg} \bullet \mathrm{m} / \mathrm{s}^{2}\right) / \mathrm{m}^{2}=\mathrm{kg} /\left(\mathrm{m} \bullet \mathrm{s}^{2}\right)$ work $(W)=($ force $) \cdot($ distance $)=\left(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}\right) \cdot \mathrm{m}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$

Prefixes

Table 1-3 Prefixes

Prefix	Symbol	Factor	Prefix	Symbol	Factor
yotta	Y	10^{24}	10^{21}	deci	d
zetta	Z	10^{18}	centi	c	10^{-1}
exa	E	milli	m	10^{-2}	
peta	P	10^{15}	micro	μ	10^{-3}
tera	T	10^{12}	nano	n	10^{-6}
giga	G	10^{9}	pico	p	10^{-9}
mega	M	10^{6}	femto	f	10^{-12}
kilo	k	10^{3}	atto	a	10^{-15}
hecto	h	10^{2}	zepto	z	10^{-18}
deka	da	10^{1}	yocto	y	10^{-21}

$1 \AA=10^{-8} \mathrm{~cm}=10^{-10} \mathrm{~m}=10^{-1} \mathrm{~nm}$
Hydrogen atom $r=0.52 \AA=5.2 \times 10^{-11} \mathrm{~m}$

Unit Conversion

Table 1-4 Conversion factors

Quantity	Unit	Symbol	SI equivalent ${ }^{a}$
Volume	liter	L	* $10^{-3} \mathrm{~m}^{3}$
	milliliter	mL	* $10^{-6} \mathrm{~m}^{3}$
Length	angstrom	Å	* $10^{-10} \mathrm{~m}$
	inch	in.	*0.025 4 m
Mass	pound	lb	*0.453 59237 kg
	metric ton		*1000 kg
Force	dyne	dyn	* $10^{-5} \mathrm{~N}$
Pressure	bar	bar	* $10^{5} \mathrm{~Pa}$
	atmosphere	atm	*101 325 Pa
Energy	torr ($=1 \mathrm{~mm} \mathrm{Hg}$)	Torr	133.322 Pa
	pound/in. ${ }^{2}$	psi	6894.76 Pa
	erg	erg	* $10^{-7} \mathrm{~J}$
	electron volt	eV	$1.602176462 \times 10^{-19} \mathrm{~J}$
	calorie, thermochemical	cal	*4.184 J
	Calorie (with a capital C)	Cal	* $1000 \mathrm{cal}=4.184 \mathrm{~kJ}$
	British thermal unit	Btu	1055.06 J
Power	horsepower		745.700 W
Temperature	centigrade (= Celsius)	${ }^{\circ} \mathrm{C}$	*K - 273.15
	Fahrenheit	${ }^{\circ} \mathrm{F}$	*1.8(K - 273.15) +32

a. An asterisk $(*)$ indicates that the conversion is exact (by definition).

Density vs. Specific Gravity

Density = mass/volume (unit: kg/L or $\left.\mathrm{g} / \mathrm{mL}=\mathrm{g} / \mathrm{cm}^{3}=\mathrm{kg} / \mathrm{dm}^{3}=\mathrm{kg} / \mathrm{L}\right)$

Density of water @ $4{ }^{\circ} \mathrm{C}=1.0 \mathrm{~g} / \mathrm{mL}$
Specific gravity = (density)/(density of water @ $4{ }^{\circ} \mathrm{C}$), dimensionless

Targets of Quantitative Chemical Analysis

- Concentration of target compound?
- Total target amount in the sample?

Concentration:

Weight-to-weight (w/w, \%, ppm, ppb)
Weight-to-volume (w/v, \%)
Volume to volume (v/v, \%)
Number-to-volume (molarity, M)

percent (\%), parts per million (ppm), and parts per billion (ppb)

- All methods involve quantifying amount of solute per amount of solvent (or solution).
- Generally amounts or measures are masses, moles or liters.
- Definitions:
mass $\%$ of component $=\frac{\text { mass of component in solution }}{\text { total mass of solution }} \times 100$
ppm of component $=\frac{\text { mass of component in solution }}{\text { total mass of solution }} \times 10^{6}$
ppb of component $=\frac{\text { mass of component in solution }}{\times 10^{9}}$

Example 1

(a) A solution made by dissolving 13.5 g of glucose in 0.1 kg of water. What's the $\%, \mathrm{ppm}$, and ppb of glucose?
(b) A 2.5 g sample of ground water containing $5.4 \mu \mathrm{~g}$ of Zn^{2+}

Molarity (M) and Molality (m)

$$
\operatorname{Molarity}(M)=\frac{\text { moles solute }}{\text { liters of solution }}
$$

$$
\operatorname{Molality}(m)=\frac{\text { moles solute }}{\mathrm{kg} \text { of solvent }}
$$

- Converting between molarity (M) and molality (m) requires density.
- kg of solvent $=\mathrm{kg}$ of solution -kg of solute
$=[($ liters of solution \times density $)]-[($ moles solute $) \times($ molecular weight) $\times(0.001)$]

Example 2

(a)Typical seawater contains 2.7 g of salt (sodium chloride, $\mathrm{NaCl})$ per $100 \mathrm{~mL}\left(=100 \times 10^{-3} \mathrm{~L}\right)$. What is the molarity (M) of NaCl in the ocean?

Keys:
What's the \# of moles of NaCl ?
What's the volume (L) and molarity (M)?
(b) MgCl_{2} has a concentration of 0.054 M in the ocean. How many grams of MgCl_{2} are present in 25 mL of seawater?

Example 3

A solution made by dissolving 4.35 g of glucose in 25 mL of water. What's the molality (m) (assume the density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$)?

Example 4

Find the molarity (M) and molality (m) of $37.0 \mathrm{wt} \% \mathrm{HCl}$. The density of a substance is the mass per unit volume. The table inside the back cover of this book tells us that the density of the reagent is $1.19 \mathrm{~g} / \mathrm{mL}$.

Conversion of m into M

What's the Molarity (M) of 1.0 Molality (m) of NaCl (molecular weight: $58.44 \mathrm{~g} / \mathrm{mol}$) water solution (density of solution is 1.05 $\left.\mathrm{g} / \mathrm{cm}^{3}\right)$?

Conversion of M into m

What's the Molality (m) of 1.0 Molarity (M) of NaCl (molecular weight: $58.44 \mathrm{~g} / \mathrm{mol}$) water solution (density of solution is 1.05 $\mathrm{g} / \mathrm{cm}^{3}$)?

How to Prepare 1000 mL of 1 M and 1 m NaCl solution, respectively

What you need?

How to prepare?

\# of Moles (Amount)

$\operatorname{Molarity}(M)=\frac{\# \text { of moles of solute }}{\text { liters of solution }}$
\# of moles of solute $=($ Molarity $(M))($ liters of solution $(L))$
$\#$ of moles of solute $=\frac{\text { mass of solute }(\mathrm{g})}{M W \text { of solute }(\mathrm{g} / \mathrm{mole})}$
e.g.,
(a) \# of moles and grams of HCl in 100 mL of 0.1 M solution?
(b) \# of moles for 1 g HCl ?

Dilution 1

\# of moles (amount) in solution does not change before and after dilution.

Simple dilution,
$M_{\text {initial }} \cdot V_{\text {initial }}=M_{\text {final }} \cdot V_{\text {final }}=(\#$ of moles $/ \mathrm{L})(\mathrm{L})=$ \# of moles
e.g., the molarity of "concentrated" HCl purchased for laboratory use is approximately 12.1 M . How many milliliters of this reagent should be diluted to 1.000 L to make 0.100 M HCl ?

Dilution 2

A solution of ammonia in water is called "ammonium hydroxide" because of the equilibrium

The density of concentrated ammonium hydroxide, which contains 28.0 wt \% NH 3 , is $0.899 \mathrm{~g} / \mathrm{mL}$. What volume of this reagent should be diluted to 500.0 mL to make $0.250 \mathrm{M} \mathrm{NH}_{3}$?

1. Molarity of $28.0 \mathrm{wt} \%$ of NH_{3} ?
2. $M_{\text {initial }} \bullet V_{\text {initial }}=M_{\text {final }} \cdot V_{\text {final }}$

Chemical Equations \& Stoichiometry

The information from stoichiometry is useful as long as it is balanced

Balancing

$$
\begin{gathered}
\mathrm{C}_{3} \mathrm{H}_{8}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \\
\text { Not balanced and how to balance? }
\end{gathered}
$$

Oxidation and Reduction

$\mathrm{Fe}^{3+}+\mathrm{V}^{2+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{V}^{3+}$

Oxidizing	Reducing
agent	agent
reduced	oxidized

Balancing Oxidation-Reduction Reactions (Acidic Condition)

$\mathrm{MnO}_{4}^{-}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q) \rightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{CO}_{2}(g)$

Two half-reactions are:

1. $\mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})$
2. $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(g)$

How to Balance Oxidation Reaction

In acidic solution
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}$
$\mathrm{MnO}_{4}^{-}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}$

In basic solution?

Revisit pH

$$
\begin{aligned}
& K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
& p H=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10}\left[\mathrm{H}^{+}\right] \\
& p O H=-\log _{10}\left[\mathrm{OH}^{-}\right] \\
& p H+p O H=14 \\
& {\left[\mathrm{H}^{+}\right]=10^{-p H}} \\
& {\left[\mathrm{OH}^{-}\right]=10^{-p \mathrm{pH}}}
\end{aligned}
$$

Strong Acids

(a) pH of 0.05 M of HClO_{4} ?

(b) pH of 0.0005 M of HCl ?
(c) pH of $0.00000001\left(10^{-8}\right) \mathrm{M} \mathrm{HCl}$?

Strong Bases

(a)What's the pH of 0.05 M of NaOH ?
(b) What's the pH of 0.005 M of $\mathrm{Ca}(\mathrm{OH})_{2}$?
(solubility of $\mathrm{Ca}(\mathrm{OH})_{2}=1.73 \mathrm{~g} / \mathrm{L}$ at $20^{\circ} \mathrm{C}$)
(c) $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$?

Weak Acids and Bases

- Weak acids (or bases) are only partially ionized in solution.
- There is a mixture of ions and unionized acid (or base) in solution.
- Therefore, weak acids are in equilibrium:
$\mathrm{HA}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)$

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}
$$

$$
p K_{a}=-\log _{10} K_{a}
$$

$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

pH of $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
& \text { e.g., } 0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{pH}=\text { ?, } \\
& \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}^{+} \quad \text { (strong acid) } \\
& 0.02 \quad 0.02 \quad 0.02 \\
& \mathrm{HSO}_{4}^{-} \rightleftarrows \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+} \quad \text { (weak acid, } \mathrm{pKa}=1.987 \text {) } \\
& 0.020 .02 \\
& 0.02-x \quad x \quad 0.02+x \\
& k_{a}=\frac{x \cdot(0.02+x)}{0.02-x}=0.012, x=0.00562 M \\
& {\left[\mathrm{H}^{+}\right]=0.02+0.0562=0.02562} \\
& \mathrm{pH}=-\log (0.02562)=1.59
\end{aligned}
$$

Conjugate Acids and Bases

- For acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}, K_{a}=1.75 \times 10^{-5}$ weak acid conjugate base
- $\mathrm{CH}_{3} \mathbf{C O O H} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$,

$$
K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-} \llbracket \mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

- $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}, K_{b}=$?

$$
\begin{aligned}
& K_{w}=K_{a} \times K_{b} \\
& p K_{w}=p K_{a}+p K_{b}=14
\end{aligned}
$$

$$
\begin{aligned}
& p X=-\log _{10}[X] \\
& p K_{a}=-\log _{10} K_{a}
\end{aligned}
$$

Typical Weak-Acid Problem

- What's the pH of 0.01 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}, K_{a}=1.75 \times 10^{-5}\right)$?
- $\mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$ before 0.01
0.0
0.0
after
0.01-x
x
x
$K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\left\lfloor\mathrm{H}^{+}\right]\right.}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{x^{2}}{0.01-x}=1.75 \times 10^{-5}, x=4.1 \times 10^{-4}$
Do not take negative x because concentration can't be negative

Typical Weak-Acid Problem

- What's the pH of 0.1 M ammonia $\left(\mathrm{NH}_{3}\right)$
- pK_{a} of $\mathrm{NH}_{4}{ }^{+}$is $9.244, \mathrm{NH}_{3}$ is conjugate base of $\mathrm{NH}_{4}{ }^{+}$(why?)
- So, $p K_{b}$ of $\mathrm{NH}_{3}=14-9.244=4.756, K_{b}=10^{-4.756}=1.75 \times 10^{-5}$.
- $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$
- $\left[\mathrm{NH}_{4}^{+}\right] \approx\left[\mathrm{OH}^{-}\right]=x,\left[\mathrm{NH}_{3}\right]=0.01-x$

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+} \llbracket \mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{x^{2}}{0.1-x}=1.75 \times 10^{-5}, x=1.31 \times 10^{-3}
$$

$$
\mathrm{X}=\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}^{+}\right]=10^{-14} /\left[\mathrm{OH}^{-}\right]=7.61 \times 10^{-12}, \mathrm{pH}=11.12
$$

pH of Salts

- Identify acid, basic, or neutral first
- Calculate pH of following solutions
- 0.1 M NaCl
- $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
- $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$

Dissociation of Weak Diprotic Acids and Bases

Diprotic acid
Amphoteric
Diprotic base

Diprotic acid: $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftarrows \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}, \quad K_{a 1} \equiv K_{1}$

$$
\mathrm{HCO}_{3}^{-} \rightleftarrows \mathrm{CO}_{3}^{2-}+\mathrm{H}^{+}, \quad K_{\mathrm{a} 2} \equiv K_{2}
$$

Diprotic base: $\mathrm{CO}_{2}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-}, \quad K_{b 1}$

$$
\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}, K_{b 2}
$$

Relations between
K_{a} and K_{b} :

$$
K_{\mathrm{a} 1} \cdot K_{\mathrm{b} 2}=K_{\mathrm{w}} \quad K_{\mathrm{a} 2} \cdot K_{\mathrm{b} 1}=K_{\mathrm{w}}
$$

Mass Balance

- When electrolytes (including acids and bases) are dissolved in water, their total amount should preserved after dissociation.
- If you add $\mathrm{H}_{3} \mathrm{PO}_{4}$ in water, $\mathrm{H}_{3} \mathrm{PO} 4$ will be present one of the following forms, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}$, and plus $\mathrm{H}_{3} \mathrm{PO} 4$ (undissociated form).
- Total Initial $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]+\left[\mathrm{HPO}_{4}{ }^{2-}\right]+$ $\left[\mathrm{PO}_{4}{ }^{3-}\right]$

Undissociated because it is weak acid

Charge Balance

- When electrolytes (including acids and bases) are dissolved in water, solution should be electrically neutral. This means that total charge of cations is identical to that of anions.
- If you add KOH and $\mathrm{H}_{3} \mathrm{PO}_{4}$ in water, there are $\mathrm{K}^{+}, \mathrm{OH}^{-}$, $\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}{ }^{2-}$, and $\mathrm{PO}_{4}{ }^{3-}$ in solution.
- Total positive charge $=\left[\mathrm{K}^{+}\right]+\left[\mathrm{H}^{+}\right]$
- Total negative charge $=\left[\mathrm{OH}^{-}\right]+$ $\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]+2\left[\mathrm{HPO}_{4}{ }^{2-}\right]+3\left[\mathrm{PO}_{4}{ }^{3-}\right]$

pH of Diprotic Acids, Salts, \& Bases

1. $\mathrm{H}_{2} \mathrm{~A}$ is treated as a monoprotic weak acid, with $K_{\mathrm{a}}=K_{1}$.

$$
K_{a}=\frac{x^{2}}{0.01-x}, x=\left[H^{+}\right]
$$

e.g., pH of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$?, $\mathrm{K}_{1}=4.46 \times 10^{-7}, \mathrm{~K}_{2}=4.69 \times 10^{-11}$
2. A^{2-} is treated as monobasic, with $K_{\mathrm{b}}=K_{\mathrm{b} 1}=K_{\mathrm{w}} / K_{2}$.

$$
K_{b}=\frac{x^{2}}{0.01-x}, x=\left[O H^{-}\right]
$$

$$
\text { e.g., } \mathrm{pH} \text { of } 0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3} ? \mathrm{~K}_{1}=4.46 \times 10^{-7}, \mathrm{~K}_{2}=4.69 \times 10^{-11}
$$

pH of Diprotic Acids and Bases (continued)

3. HA^{-}is treated as the intermediate form of a diprotic acid (F ; formal concentration of HA^{-})

$$
\left[H^{+}\right] \approx \sqrt{\frac{K_{l} K_{2} F+K_{l} K_{w}}{K_{l}+F}}
$$

How? Prove it by charge and mass balance
e.g., pH of $0.1 \mathrm{M} \mathrm{NaHCO}_{3}$? $\mathrm{K}_{1}=4.46 \times 10^{-7}, \mathrm{~K}_{2}=4.69 \times 10^{-11}$

$\mathrm{p} K_{\mathrm{a}}$ vs. pH

$\mathrm{HX}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{X}^{-}(a q)$

$$
\begin{aligned}
& K_{a}=\frac{\left[H^{+}\right]\left[X^{-}\right]}{[H X]}, \text { then }\left[H^{+}\right]=K_{a} \frac{[H X]}{\left[X^{-}\right]} \\
& -\log \left[H^{+}\right]=-\log K_{a}-\log \frac{[H X]}{\left[X^{-}\right]}
\end{aligned}
$$

$\therefore p H=p K_{a}+\log \frac{\left[X^{-}\right]}{[H X]}$
$\therefore p H=p K_{a}$, if $[H X]=\left[X^{-}\right]$

- pK_{a} is the pH where 50% of acids is deprotonated.
- If $\mathrm{pH}>\mathrm{pK}_{\mathrm{a}}$, more than 50% of acids are deprotonated
- If $\mathrm{pH}<\mathrm{pK}_{\mathrm{a}}$, less than 50% of acids are deprotonated

pH Effect on Net Charge

Glycine

$$
\begin{array}{ll}
+2, & \mathrm{pH}<2.2 \\
+1, & 2.2<\mathrm{pH}<9.0 \\
0, & 9.0<\mathrm{pH}<10.5 \\
-1, & 10.5<\mathrm{pH}
\end{array}
$$

Lysine

Suprofen

$$
p K_{a}=3.9
$$

composition at $\mathrm{pH}=7.2$?
amphetamine

Buffered Solutions

- A buffer consists of a mixture of a weak acid (HA) and its conjugate base (A^{-}) (or weak base and conjugate acid):
- The K_{a} expression is

$$
\mathrm{HA}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

$$
\begin{aligned}
& K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \\
& \therefore\left[H^{+}\right]=K_{a} \frac{[H A]}{\left[A^{-}\right]}
\end{aligned}
$$

- A buffer resists a change in pH when a small amount of OH^{-}or H^{+}is added.

Henderson-Hasselbalch Equation

$$
\mathrm{HA}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

$$
\begin{aligned}
& K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \\
& \therefore\left[H^{+}\right]=K_{a} \frac{[H A]}{\left[A^{-}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& -\log \left[H^{+}\right]=-\log K_{a}-\log \frac{[H A]}{\left[A^{-}\right]} \\
& \therefore p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}
\end{aligned}
$$

If we know $\left[A^{-}\right]$and $[H A]$, and K_{a}, then we can calculate pH of buffer

Example 5

What's the pH of a buffer that is 0.12 M in lactic acid $\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)$ and 0.1 M in sodium lactate? For lactic acid, $K_{a}=$ 1.4×10^{-4}.
$p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}$

Example 6

A buffer is made by adding $0.3 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.3 mol $\mathrm{CH}_{3} \mathrm{COONa}$ to enough water to make 1.0 L of solution. For $\mathrm{CH}_{3} \mathrm{COOH}, K_{a}=1.8 \times 10^{-5}$.
(a) what's the pH of this buffer?
(b) what's the pH after 0.02 mole of NaOH is added?
(c) what's the pH after 0.02 mole of HCl is added?

Strong Acid- Strong Base Titration

```
HCl (analyte) + NaOH (titrant) }\longrightarrow\textrm{NaCl}(\mathrm{ salt) + + + \(0.02 \mathrm{M}, 50 \mathrm{~mL} \quad 0.1 \mathrm{M}\)
```

1: Before equivalence point: 9.50 mL of 0.1 M NaOH was added
Step 1: \# of mole of HCl and \# of mole of NaOH before reaction Step 2: \# of mole of HCl after reaction
Step 3: $[\mathrm{HCl}]$
Step 4: $\left[\mathrm{H}^{+}\right]$
Step 5: pH
2. At the equivalence point: 10.00 mL of 0.1 M NaOH was added
3. After equivalence point: 10.50 mL of 0.1 M NaOH was added

Strong Acid-Base Titration

Weak Acid- Strong Base Titration

$$
0.02 \mathrm{M}, 50 \mathrm{~mL} \quad 0.1 \mathrm{M}, x \mathrm{~mL}
$$

1. Before base is added, it is a solution of weak acid (pH can be found from K_{a})
2. Before equivalence point: 3.0 mL of 0.1 M NaOH was added It is a buffer solution containing weak acid (HA) and its conjugate base (A^{-})

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

3. At the equivalence point: 10 mL of 0.1 M NaOH was added Only conjugate base exists ($\mathrm{pH}>7$, can be calculated from K_{b} or K_{a})
4. After equivalence point: 10.10 mL of 0.1 M NaOH was added Two bases are exist, NaOH and A^{-}, we can calculate pH

Weak Acid- Strong Base Titration

Diprotic Acid- Strong Base Titration

$\mathrm{H}_{2} \mathrm{~A}$ (analyte) +2 NaOH (titrant) $\longrightarrow \mathrm{Na}_{2} \mathrm{~A}$ (salt) $+2 \mathrm{H}_{2} \mathrm{O}$
$0.1 \mathrm{M}, 20 \mathrm{~mL} \quad 0.1 \mathrm{M}$
$\mathrm{K}_{1}=1.4 \times 10^{-2}, \mathrm{~K}_{2}=6.5 \times 10^{-8}$
1: Before equivalence point: 19 mL of 0.1 M NaOH was added $\mathrm{H}_{2} \mathrm{~A}$ (analyte) +NaOH (titrant) $\longrightarrow \mathrm{NaHA}$ (salt) $+\mathrm{H}_{2} \mathrm{O}$

Step 1: \# of mole of $\mathrm{H}_{2} \mathrm{~A}$ and \# of mole of NaOH before reaction Step 2: \# of mole of $\mathrm{H}_{2} \mathrm{~A}$ after reaction
Step 3: $\left[\mathrm{H}_{2} \mathrm{~A}\right]$
Step 4: $\left[\mathrm{H}^{+}\right]$
Step 5: pH
2. At the $1^{\text {st }}$ equivalence point: 20.00 mL of 0.1 M NaOH was added
3. After $1^{\text {st }}$ equivalence point: 30 mL of 0.1 M NaOH was added NaHA (analyte) +NaOH (titrant) $\longrightarrow \mathrm{Na}_{2} \mathrm{~A}$ (salt) $+\mathrm{H}_{2} \mathrm{O}$
4. At the $2^{\text {nd }}$ equivalence point: 40.00 mL of 0.1 M NaOH was added
5. After the 2nd equivalence point: 50.00 mL of 0.1 M NaOH was added

Titration Curve

Chemistry of Indicators

Phenolphthalein $\mathrm{pH}<8.0 \square \mathrm{pH}>9.6$

Color change why?

Significant Figures

9.25×10^{4}
9.250×10^{4}
9.2500×10^{4}

3 significant figures
4 significant figures
5 significant figures
0.0050 two significant figures 0.00500 three significant figures

The last significant figure has always uncertainty

What's your reading?

Percent transmittance

Absorbance

58.2 or 58.3 or 58.4

The last significant figure has always uncertainty ${ }^{55}$

Addition and subtraction

$100000000000000000+0.000001=100000000000000000.000001$
Is this meaningful? answer is no

Now, $100000000000000000+0.000001=?$

Multiplication and division

In multiplication and division, we are normally limited to the number of digits contained in the number with the fewest significant figures

Gaussian distribution

Example 7

Find the average and the standard deviation for $821,783,834$, and 855.
$\bar{x}=\frac{821+783+834+855}{4}=823_{\cdot 2}$
$s=\sqrt{\frac{(821-823.2)^{2}+(783-823.2)^{2}+(834-823.2)^{2}+(855-823.2)^{2}}{(4-1)}}$
$=30 \cdot 3$
$823.2 \pm 30.3 \longrightarrow$ good for continued calculation $\left.\begin{array}{l}823 \pm 30 \\ 820 \pm 30\end{array}\right] \longrightarrow$ good for final calculation

Confidence interval

The confidence interval is an expression stating that the true mean, μ, is likely to lie within a certain distance from the measured mean, \bar{x}.

$$
\boldsymbol{\mu}=\bar{x} \pm \frac{t s}{\sqrt{n}}
$$

s : measured standard deviation
n : \# of measurements
t. student's t value (see table in the next page)

Table 4-2 Values of Student's t

$\begin{aligned} & (n-1) \\ & \text { Degrees of freedom } \end{aligned}$	Confidence level (\%)						
	50	90	95	98	99	99.5	99.9
1	1.000	6.314	12.706	31.821	63.657	127.32	636.619
2	0.816	2.920	4.303	6.965	9.925	14.089	31.598
3	0.765	2.353	3.182	4.541	5.841	7.453	12.924
4	0.741	2.132	2.776	3.747	4.604	5.598	8.610
5	0.727	2.015	2.571	3.365	4.032	4.773	6.869
6	0.718	1.943	2.447	3.143	3.707	4.317	5.959
7	0.711	1.895	2.365	2.998	3.500	4.029	5.408
8	0.706	1.860	2.306	2.896	3.355	3.832	5.041
9	0.703	1.833	2.262	2.821	3.250	3.690	4.781
10	0.700	1.812	2.228	2.764	3.169	3.581	4.587
15	0.691	1.753	2.131	2.602	2.947	3.252	4.073
20	0.687	1.725	2.086	2.528	2.845	3.153	3.850
25	0.684	1.708	2.060	2.485	2.787	3.078	3.725
30	0.683	1.697	2.042	2.457	2.750	3.030	3.646
40	0.681	1.684	2.021	2.423	2.704	2.971	3.551
60	0.679	1.671	2.000	2.390	2.660	2.915	3.460
120	0.677	1.658	1.980	2.358	2.617	2.860	3.373
∞	0.674	1.645	1.960	2.326	2.576	2.807	3.291

NOTE: In calculating confidence intervals, σ may be substituted for s in Equation 4-6 if you have a great deal of experience with a particular method and have therefore determined its "true" population standard deviation. If σ is used instead of s, the value of t to use in Equation 4-6 comes from the bottom row of Table 4-2.

Example 8

The carbohydrate content of a glycoprotein (a protein with sugars attached to it) is determined to be $12.6,11.9,13.0,12.7$, and 12.5 g of carbohydrate per 100 g of protein in replicate analyses. Find the 50% and 90% confidence intervals for the carbohydrate content.

$$
\bar{x}=12.54, s=0.40
$$

50 \% confidence interval,

$$
\boldsymbol{\mu}=\bar{x} \pm \frac{t s}{\sqrt{n}}=12.5_{4} \pm \frac{(0.741)\left(0.4_{0}\right)}{\sqrt{5}}=12.5_{4} \pm 0.1_{3}
$$

90 \% confidence interval,

$$
\mu=\bar{x} \pm \frac{t s}{\sqrt{n}}=12.5_{4} \pm \frac{(2.132)\left(0.4_{0}\right)}{\sqrt{5}}=12.5_{4} \pm 0.3_{8}
$$

Confidence interval vs. n

50% confidence interval is narrower than 90% confidence interval

Confidence interval becomes narrower by more measurements

What does it mean by confidence interval?

50% of confidence interval will include true mean

90% of confidence interval will include true mean

t-Test

A t test can be used to compare one set of measurements with another to decide whether or not they are the same.

Three different cases,

Case 1: Comparing measure results with a "known" value

Case 2: Comparing replicate measurements
Case 3: Comparing individual difference

Case 1: Comparing measure results with a "known" value

You purchased a Standard Reference Material coal sample certified by NIST to contain 3.19 wt \% sulfur. You are testing a new analytical method to see whether it can reproduce the known value. The measured values are 3.29, 3.22, 3.30, and $3.23 \mathrm{wt} \%$ sulfur, giving a mean of $\bar{x}=3.26_{0}$ and a standard deviation of $s=0.04_{1}$. Does your answer agree with the known answer?

To find out, compute $\mathrm{t}_{\text {calculated }}$ and compare it with $t_{\text {table }}$ in Table 4-2. If $t_{\text {calculated }}$ is greater than $t_{\text {table }}$ at the 95% confidence level, the two results are considered to be different.

$$
t_{\text {calculated }}=\frac{\mid \bar{x}-\text { known value } \mid}{s} \sqrt{n}
$$

$$
t_{\text {calculated }}=\frac{\left|3.26_{0}-3.19\right|}{0.04_{1}} \sqrt{4}=3.41
$$

Result is different from the known value. The chance that you made

$$
t_{\text {calculated }}(=3.41)>t_{\text {table }}(=3.182)
$$ a mistake when concluding that they are different is 5%.

Case 2: Comparing replicate measurements

Table 4-3 Masses of gas isolated by Lord Rayleigh

Are they same?

From chemical
From air (g) decomposition (g)

2.31017	2.30143
2.30986	2.29890
2.31010	2.29816
2.31001	2.30182
2.31024	2.29869
2.31010	2.29940
2.31028	2.29849
-	2.29889

Average
$2.31011 \quad 2.29947$

Standard deviation
$0.00014_{3} \quad 0.00138$
source: R. D. Larsen, J. Chem. Ed. 1990, 67, 925; see also C. J. Giunta, J. Chem. Ed. 1998, 75, 1322.

$$
\begin{aligned}
& t_{\text {calculated }}=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{s_{\text {pooled }}} \sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}} \\
& s_{\text {pooled }}=\sqrt{\frac{\sum_{\text {set } 1}\left(x_{i}-\bar{x}_{1}\right)^{2}+\sum_{\text {set } 2}\left(x_{j}-\bar{x}_{2}\right)^{2}}{n_{1}+n_{2}-2}}=\sqrt{\frac{s_{1}^{2}\left(n_{1}-1\right)+s_{2}^{2}\left(n_{2}-1\right)}{n_{1}+n_{2}-2}} \\
& x_{1}=2.31011 \mathrm{~g}, s_{1}=0.00014_{3}, n_{1}=7 \text { measurements } \\
& x_{2}=2.29947 \mathrm{~g}, s_{2}=0.00138, n_{2}=8 \text { measurements } \\
& s_{\text {pooled }}=\sqrt{\frac{0.00014_{3}^{2}(7-1)+0.00138^{2}(8-1)}{7+8-2}}=0.00102 \\
& t_{\text {calculated }}=\frac{|2.31011-2.29947|}{0.00102} \sqrt{\frac{7 \cdot 8}{7+8}}=20.2 \\
& \text { For } 13 \text { (7 + }+2 \text {-2) degrees of freedom in Table 4-2, } t_{\text {table }} \\
& \text { for lies between } 95 \% \text { confidence. Because } t_{\text {calculated }} \gg t_{\text {table }} \text {, the difference is significant. In fact, } \\
& t_{\text {table }} \text { for } 99.9 \% \text { confidence is } \sim 4.3 \text {. The difference is significant beyond the } 99.9 \% \\
& \text { confidence level. }
\end{aligned}
$$

Case 3: Comparing Individual Difference

Table 4-4 Comparison of two methods for measuring cholesterol

	Cholesterol content $(\mathrm{g} / \mathbf{L})$		
Plasma sample $\left(\boldsymbol{d}_{\boldsymbol{i}}\right)$	Method A	Method B	Difference
1	1.46	1.42	0.04
2	2.22	2.38	-0.16
3	2.84	2.67	0.17
4	1.97	1.80	0.17
5	1.13	1.09	0.04
6	2.35	2.25	0.10

Is method \mathbf{B} systematically different from method \mathbf{A} ?

$$
t_{\text {calculated }}=\frac{\bar{d}}{s_{d}} \sqrt{n} \quad s_{d}=\sqrt{\frac{\sum\left(d_{i}-\bar{d}\right)^{2}}{n-1}}
$$

The quantity \bar{d} is the average difference between methods A and B , and n is the number of pairs of data (six in this case).

$$
\begin{aligned}
& s_{\mathrm{d}}=\sqrt{\frac{(0.04-\bar{d})^{2}+(-0.16-\bar{d})^{2}+(0.17-\bar{d})^{2}+(0.17-\bar{d})^{2}+(0.04-\bar{d})^{2}+(0.10-\bar{d})^{2}}{6-1}} \\
& \quad=0.12_{2}\left(\text { using } \bar{d}=0.06_{0}\right) \\
& t_{\text {calculated }}=\frac{0.06_{0}}{0.12_{2}} \sqrt{6}=1.20
\end{aligned}
$$

We find that $t_{\text {calculated }}$ (1.20) is less than $t_{\text {table }}(2.571)$ listed in Table 4-2 for 95% confidence and 5 degrees of freedom. The two techniques are not significantly different at the 95% confidence level.

Q test for bad data

The \boldsymbol{Q} test helps decide whether to retain or disregard a questionable data.

If $Q_{\text {calculated }}>Q_{\text {table }}$, the questionable point should be discarded. For the numbers above, $Q_{\text {calculated }}=0.11 / 0.20=0.55$. In Table 4-6, we find $Q_{\text {table }}=$ 0.64. Because $Q_{\text {calculated }}<Q_{\text {table }}$, the questionable point should be retained. There is more than a 10% chance that the value 12.67 is a member of the same population as the other four numbers.

