CHE680 Advanced Analytical Chemistry Lecture 5

Jamie Kim Department of Chemistry Buffalo State College

UV/Vis Spectroscopy

- Theory
- Chemical Information
- Instrumentation

http://www.cem.msu.edu/~reusch/VirtTxtJml/Spectrpy/UV-Vis/spectrum.htm http://www.shu.ac.uk/schools/sci/chem/tutorials/molspec/uvvisab1.htm

Each type of spectroscopy focuses upon a specific region of the electromagnetic spectrum:

Why should we learn this stuff? After all, nobody solves structures with UV any longer!

- Many organic molecules have chromophores that absorb UV
- UV absorbance is about 1000 x easier to detect per mole than NMR
- Still used in following reactions where the chromophore changes. Useful because timescale is so fast, and sensitivity so high. Kinetics, esp. in biochemistry and enzymology.
- Most quantitative analytical chemistry in organic chemistry is conducted using HPLC with UV detectors
- Affects quantitative interpretation of HPLC peak heights

Compounds with/without Colors

Relative Energy Level

UV/Vis $\Delta E \approx 200 \sim 500 \text{ nm} (50000 \sim 20000 \text{ cm}^{-1})$

E₂

Spin Selection Rule: $\Delta S = 0$

- M (multiplicity) = 2S+1 (S = total spin)
- Allow $S \rightarrow S$, and $T \rightarrow T$ processes but not $S \rightarrow T$ and $T \rightarrow S$.
- Ground states are usually singlets; thus most excitations are to singlet excited states, like $S_0 \rightarrow S_1$, $S_0 \rightarrow S_2$, ...

Possible Electronic Transitions 1

UV/vis spectroscopy probes the electronic transitions of molecules involving π , σ , and *n* electrons as they absorb light in the UV and visible regions of the electromagnetic spectrum.

Example: $\pi \rightarrow \pi^*$ transitions responsible for ethylene UV absorption at ~170 nm calculated with ZINDO semi-empirical excited-states methods (Gaussian 03W):

HOMO π_u bonding molecular orbital

LUMO π_{g} antibonding molecular orbital

Possible Electronic Transitions 2

- HOMO: highest occupied molecular orbital
- LUMO: lowest unoccupied molecular orbital
- $\sigma \rightarrow \sigma^*$ and $\sigma \rightarrow \pi^*$ transitions: high-energy, accessible in vacuum UV ($\lambda_{max} < 150 \text{ nm}$). Not usually observed in molecular UV-Vis.
- $n \rightarrow \sigma^*$ and $\pi \rightarrow \sigma^*$ transitions: non-bonding electrons (lone pairs), wavelength (λ_{max}) in the 150-250 nm region.

Possible Electronic Transitions 3

 $n \to \pi^* \text{ or } \pi \to \pi^*$

Related to most absorption of organic compounds Experimentally convenient region of the spectrum (200 - 700 nm). Molar absorption coefficient from $n \to \pi^*$ transitions are low (10 to100 L mol⁻¹ cm⁻¹), but that from $\pi \to \pi^*$ transitions are between 1000 to10000 L mol⁻¹ cm⁻¹).

Chromophore	Example	Excitation	λ_{max} , nm	٤	Solvent
C=C	Ethene	π -> π*	171	15,000	hexane
C≡C	1-Hexyne	π -> π*	180	10,000	hexane
C=O	Ethanal	n> π* π> π*	290 180	15 10,000	hexane hexane
N=O	Nitromethane	n> π* π> π*	275 200	17 5,000	ethanol ethanol
C-X X=Br X=I	Methyl bromide Methyl lodide	n> σ* n> σ*	205 255	200 360	hexane hexane

$\pi \rightarrow \pi^* \text{ vs } n \rightarrow \pi^* \text{ transitions}$

In general, the intensities from $\pi \rightarrow \pi^*$ transitions are stronger than those for $n \rightarrow \pi^*$ transitions

How Do UV Spectrometers Work?

Diode Array Detectors

Diode array: array of photosensitive semiconductors after the light goes through the sample.

Advantage: speed, sensitivity,

Disadvantage: resolution is 1 nm, vs 0.1 nm for normal UV ¹⁴

UV/Vis Source

$D_2 + E_e \rightarrow D_2^* \rightarrow D' + D'' + h\nu$ (UV-Vis)

Deuterium arc lamp

Light source change 360 - 300 nm

(Vis)

Detectors

Photomultiplier Tube (PMT): Single Channel

Photodiode Array: Multi-channel

Two-dimensional

Experimental details

- What compounds show UV spectra?
 - Generally think of any *unsaturated compounds* as good candidates. Conjugated double bonds are strong absorbers
 - 2. Just heteroatoms are not enough but C=O are reliable
 - 3. Most compounds have "end absorbance" at lower frequency. Unfortunately solvent cutoffs preclude observation.
 - 4. You will find molar absorbtivities ϵ in L•cm/mol, tabulated.
- Transition metal complexes, inorganics
- Solvent must be UV grade (great sensitivity to impurities with double bonds)
- The NIST databases have UV spectra for many compounds

NIST Chemistry WebBook

http://webbook.nist.gov/chemistry/

NIST Chemistry WebBook

NIST Standard Reference Database Number 69

View: Search Options, Models and Tools, Documentation, Changes, Notes

Show Credits

NIST reserves the right to charge for access to this database in the future.

Search Options top

General Searches

Physical Property Based Searches

- Formula
- Name
- IUPAC identifier
- Ion energetics properties
- Vibrational and electronic energies
- Molecular weight
- CAS registry number
- Reaction
- Author
- Structure

An Electronic Spectrum

Wavelength, λ , generally in nanometers (nm)

An Electronic Spectrum

- Some solvents absorb UV at lower wavelength
- For quantitative work, the cut-off may be set at a wavelength (λ_0) where the absorbance for 10 mm pathlength of the solvent exceeds 0.05 absorbance units (relative to water)

Solvents for UV (Showing High Energy Cutoffs)

Water	205	THF	220	
CH ₃ C≡N	210	CH_2Cl_2	235	
$C_{6}H_{12}$	210	CHCl ₃	245	
Ether	210	CCl_4	265	
EtOH	210	benzene	280	
Hexane	210	Acetone	300	
МеОН	210	Various buffers for HPLC, check before using.		
Dioxane	220			

Organic compounds (many of them) have UV spectra

- UVs can be very non-specific
- Its hard to interpret except at a cursory level, and to say that the spectrum is consistent with the structure
- Each band can be a superposition of many transitions
- Generally we don't assign the particular transitions.

Beer's (Beer-Bouger-Lambert) Law

Beer's (Beer-Bouger-Lambert) Law

- 1. Linear absorbance (A) with increased concentration-directly proportional
- 2. Makes UV useful for <u>quantitative analysis</u> and in <u>HPLC detectors</u>
- 3. Above a certain concentration the linearity curves down, loses direct proportionality
- 4. Recommended $A_{\text{max}} < 1.0$

Limitations of Beer's Law

- 1. Chemical effects analyte associates, dissociates or reacts to give molecule with different ϵ
- 2. Physical effects stray light, polychromatic radiation or noise
 - As concentration increases there will be a consequent change in refractive index, *n*.
 - As concentration increases the solute begins to have a significant influence on the local electromagnetic environment.

Application of Beer's Law

Determination of concentration of unknown compounds

Conjugation

More conjugated π systems, more π orbitals, and the energy gap between HOMO and LUMO is decreased (200 – 800 nm)

The added conjugation in naphthalene, anthracene and tetracene causes bathochromic shifts (red shifts) of these absorption bands, as displayed in the chart on the left below.

Conjugation with Lone Pair Electrons

For unsaturated aldehydes and ketones and aromatic ring compounds, the $\pi \rightarrow \pi^*$ absorption located at 242 nm is very strong, with an $\varepsilon = 18,000$. The weak n $\rightarrow \pi^*$ absorption near 300 nm has an $\varepsilon = 100$.

29