

Jamie Kim Department of Chemistry Buffalo State College

Gas Chromatography

- http://www.youtube.com/watch?v=dffeiLgeKx8
- https://www.youtube.com/watch?v=piGSGkcwFAw
- Samples (gas or liquid or solid) should be vaporized.
- Sample is transported through the column by the flow of inert and gaseous mobile phase.
- Components in a sample are separated and pass the detector with different time.

What's the method?

- Analytical procedure to detect and quantify target compounds from sample preparation, chemical analysis, and data analysis.
- GC: choice column, inlet temperature, detector, oven temperature, flow rate, etc.
- For a given target compound, different methods are developed depending on samples (caffeine in coffee, caffeine in urine, caffeine in blood, etc).
- For a given compound in a same sample (caffeine in coffee), many methods are developed.
- For some compounds, methods are not flexible (should flow specific methods).

GC Method

- For a give compound, experimental conditions are specified (choice column, inlet temperature, detector, oven temperature, flow rate, etc).
- For a new method development, these conditions should be optimized to get the best results (peak shape, resolution, etc).
- Methods should be validated using a standard sample.
- First step: (a) understand components in GC and their functions and (b) effects of experimental conditions on analytical data (chromatogram)

Carrier Gas

- The carrier gas must be *chemically inert*.
- Commonly used gases include <u>nitrogen</u>, <u>helium, argon, and carbon dioxide</u>.
- The choice of carrier gas is often dependent upon the type of detector which is used.
- The carrier gas system also contains a molecular sieve to remove oxygen, water, and other impurities.

Columns

 There are two general types of column, packed and capillary (also known as open tubular).

Packed Columns (Limited Use)

- Packed columns contain a finely divided, inert, solid support material (chromosorb, commonly based on natural product, *diatomaceous earth*) coated with various stationary phase.
- Most packed columns are 1.5 10 m in length and have an internal diameter of 2 – 4 mm.

Capillary Columns (Popular)

Capillary Column's Labels

Manufacturer Stationary Phase Dimension Film thickness Operation Temperature

J&W Scientific Inc Cat. No. 1241574 DB-5 75 m X 0.45 mm 2.55 micron -10 to 260 C SN 0517

Stationary Phase

Chemically inert

Non-volatile

Thermal stablility

Appropriate physical sorption of analyte

Table 24-1 Common stationary phases in capillary gas chromatography

Table 24-2Polarity of solutes

Nonpolar	Weak intermediate polarity		
Saturated hydrocarbons	Ethers		
Olefinic hydrocarbons	Ketones		
Aromatic hydrocarbons	Aldehydes		
Halocarbons	Esters		
Mercaptans	Tertiary amines		
Sulfides	Nitro compounds (without α -H atoms)		
CS ₂	Nitriles (without α -atoms)		
Strong intermediate polarity	Strongly polar		
Alcohols	Polyhydroxyalcohols		
Alcohols Carboxylic acids	Polyhydroxyalcohols Amino alcohols		
Alcohols Carboxylic acids Phenols	Polyhydroxyalcohols Amino alcohols Hydroxy acids		
Alcohols Carboxylic acids Phenols Primary and secondary amines	Polyhydroxyalcohols Amino alcohols Hydroxy acids Polyprotic acids		
Alcohols Carboxylic acids Phenols Primary and secondary amines Oximes	Polyhydroxyalcohols Amino alcohols Hydroxy acids Polyprotic acids Polyphenols		
Alcohols Carboxylic acids Phenols Primary and secondary amines Oximes Nitro compounds (with α-H atoms)	Polyhydroxyalcohols Amino alcohols Hydroxy acids Polyprotic acids Polyphenols		

SOURCE: Adapted from H. M. McNair and E. J. Bonelli, *Basic Gas Chromatography* (Palo Alto, CA: Varian Instrument Division, 1968).

Selection of Columns

- Column internal materials (stationary phase)
- Stationary phase thickness
- Column internal diameter (ID)
- Column length
- etc

- Choose the least polar phase that will perform the separation you require.
- Choose BP-WAX[™] to separate compounds such as alcohols, ketones, aldehydes, and esters.
- The 5% phenyl columns (BP5 or HP5 or DB5) can be used in 90% of all separations.

Column Temperature (Isothermal)

Column Temperature (Programmed)

18

Injector Port

Split Ratio

You are here:

Split Ratio

Peak Tailing

What are the Possible Causes for Peak Tailing? - General GC

- Column Contamination
- Column activity
- Solvent-phase polarity mismatch
- Solvent effect violation for splitless or oncolumn injections
- Too low of a split ratio
- Poor column installation
- Some active compounds always tail

Peak Fronting

What are the Possible Causes for Peak Fronting? - General GC

- Column overload
- Reduce injection volume
- Reduce sample concentrations
- Use a column with larger i.d.

Guard Column

- installed between the injector and the analytical column.
- designed to increase the lifetime of an analytical column by protecting the analytical column from unwanted materials,
 - highly retained (very long retention time)
 - irreversibly retained compounds (stick forever inside the column)
 - particulate matter (clogging)

Guard Column

Detectors of GC

- Different detectors will give different types of selectivity.
- A *non-selective* detector responds to all compounds except the carrier gas.
- A selective detector responds to a range of compounds with a common physical or chemical property.
- A *specific detector* responds to a single chemical compound.

Detector	Туре	Support gases	Selectivity	Detection limit	Dynamic range
Flame ionization	Mass flow	Hydrogen and air	Most organic cpds.	100 pg	10 ⁷
Thermal conductivity	Conc.	Reference	Universal	1 ng	10 ⁷
Electron capture	Conc.	Make-up	Halides, nitrates, nitriles, peroxides, anhydrides, organometallics	50 fg	10 ⁵
Nitrogen- phosphorus	Mass flow	Hydrogen and air	Nitrogen, phosphorus	10 pg	10 ⁶
Flame photometric	Mass flow	Hydrogen and air possibly oxygen	Sulphur, phosphorus, tin, boron, arsenic, germanium, selenium, chromium	100 pg	10 ³
Photo- ionization (PID)	Conc.	Make-up	Aliphatics, aromatics, ketones, esters, aldehydes, amines, heterocyclics, organosulphurs, some organometallics	2 pg	10 ⁷
Hall electrolytic conductivity	Mass flow	Hydrogen, oxygen	Halide, nitrogen, nitrosamine, sulphur		

Thermal Conductivity Detector (TCD)

- A TCD detector consists of an electrically-heated wire or thermistor.
- The temperature of the sensing element depends on the thermal conductivity of the gas flowing around it.
- Changes in thermal conductivity, such as when organic molecules displace some of the carrier gas, cause a temperature rise in the element which is sensed as a change in resistance.
- The TCD is not as sensitive as other detectors but it is nonspecific and non-destructive.
- Two pairs of TCDs are used in gas chromatographs.
- One pair is placed in the column effluent to detect the separated components as they leave the column, and another pair is placed before the injector or in a separate reference column.
- The resistances of the two sets of pairs are then arranged in a bridge circuit.

Thermal Conductivity Detector (TCD)

Table 24-4	Thermal conductivity
at 273 K an	d 1 atm

Gas	Thermal conductivity J/(K · m · s)
Н,	0.170
He	0.141
NH ₃	0.021 5
N_2	0.024 3
$\tilde{C_2H_4}$	0.017 0
$\tilde{O_2}$	0.024 6
Ār	0.016 2
C_3H_8	0.015 1
CO ₂	0.014 4
Cl ₂	0.007 6

The energy per unit area per unit time flowing from a hot region to a cold region is given by

Energy flux $(J/m^2 \cdot s) = -k(dT/dx)$

where k is the thermal conductivity [units = $J/(K \cdot m \cdot s)$] and dT/dx is the temperature gradient (K/m). Thermal conductivity is to energy flux as the diffusion coefficient is to mass flux.

Flame Ionization Detector (FID)

- The effluent from the column is mixed with hydrogen and air, and ignited.
- Organic compounds burning in the flame produce ions and electrons which can conduct electricity through the flame.
- A large electrical potential is applied at the burner tip, and a collector electrode is located above the flame.
- The current resulting from the pyrolysis of any organic compounds is measured.
- General detector for the analysis of organic compounds; it has high sensitivity, a large linear response range, and low noise.
- It is also robust and easy to use, but unfortunately, it destroys the sample.

The Flame Ionisation Detector

Electron Capture Detector (ECD)

- The ECD uses a radioactive Beta emitter (electrons) to ionize some of the carrier gas and produce a current between a biased pair of electrodes.
- When organic molecules that contain electronegative functional groups, such as <u>halogens</u>, <u>phosphorous</u>, <u>and nitro groups</u> pass by the detector, they capture some of the electrons and reduce the current measured between the electrodes.
- The ECD is as sensitive as the FID but has a limited dynamic range and finds its greatest application in analysis of halogenated compounds.

Electron Capture Detector (ECD)

Nitrogen Phosphorus Detector (NPD)

- NPD is a highly sensitive and selective to organic compounds containing **nitrogen and/or phosphorus**.
- NPD is often used to detect pesticides, herbicides, drugs of abuse, and other trace compounds.
- NPD is similar in design to the FID, except it uses a thermionic NPD bead to generate ions in a hydrogen and air plasma.
- Like FID, NPD uses a stainless steel jet to deliver sampleladen carrier gas and hydrogen gas to the detector, and a positively charged collector electrode that also serves as the detector exhaust.

Nitrogen Phosphorus Detector (NPD)

- In a detector body, an electrically heated thermionic bead (NPD bead) is positioned between the jet orifice and the collector electrode.
- The bead is coated with an alkali metal (Cs or Rb) which promotes the ionization of compounds that contain nitrogen or phosphorus.
- Hydrogen and air flows create a hydrogen plasma around the hot NPD bead.
- When molecules containing nitrogen or phosphorus enter the plasma from the column and jet orifice, they undergo a catalytic surface chemistry reaction, producing thermionic electrons.
- The resulting ions are attracted to a positively charged collector electrode, then amplified and output to the data system.

Nitrogen Phosphorus Detector (NPD)

Method Development

- Definition: Optimize GC experimental conditions for detection of target compounds in specific samples
- Conditions: Oven Temperature, Choice of Detector and Temperature, Column, Injection Amount and Temperature, ETC
- For a specific target compound, many methods are possible.
- Developed Methods should be validated (Standard Samples)