Lecture 1
Microscopy in Forensics
Microscopy in Forensic Science
2. *Physics (any textbooks are okay)*
 - Chapter 5: Foundations of forensic microscopy
 - Chapter 6: Visible microscopical spectrometry in the forensic sciences
 - Chapter 7: The forensic identification and association of human hair
 - Chapter 5: Microscopy and microchemistry of physical evidence
 - Chapter 6: An introduction to the forensic aspects of textile fiber examination
 - Chapter 1: Classification of textile Fibers
 - Chapter 2: The structure of Textiles
 - Chapter 7: Microscopical Examination of Fibers
 - Chapter 9.2: Scanning electron microscopy and elemental analysis
7. *Forensic Examination of Hair* (ed. J. Robertson), Taylor & Francis
 - Chapter 1: Physiology and growth of human hair
 - Chapter 2: Forensic and microscopic examination of human hair
8. *Forensic Examination of Glass and Paint* (ed. B. Caddy), Taylor & Francis
 - Chapter 1: What is trace evidence?
 - Chapter 3: Microscopic techniques for glass examination
 - Chapter 8: The role of color and microscopic techniques for the characterization of paint fragments
 - Chapter 12: SEM/EDS for forensic examination of paints and coatings
 - Fibers (page 125) and Hair (page 173)
The Scope of Microscopy in Forensic Science

• Preliminary, routine, and easily accessible investigating tool.

• Characterization, identification, and comparison of any physical evidences

• Various samples: drug, paint, soil, minerals, dusts, glass, polymers, fibers (synthetic and natural), paper, starches, wood, hairs, pollens, etc

• Limited chemical information: polarized light source, fluorescence labeling, coupled with infrared spectroscopy, and microprobe analysis (electron microscopy)
What are These Images?

http://petapixel.com/2013/05/17/scientist-creates-and-snaps-photographs-of-microscopic-crystal-flowers/
Applications in Forensic Science

• Investigation for any physical evidences
 1. Fiber and hair investigations
 2. Document examination
 3. Tool mark comparison
 4. Firearm investigation
 5. Serology (scientific study of blood serum)
 6. Drug chemistry
 7. Trace evidence, etc

• Goals
 1. Routine instrument for most preliminary examinations and evaluations
 2. Major tool in hair and fiber investigations
Varieties of Microscopy

- **Optical microscopy (OM)**
 1. Visible light (400 – 700 nm)
 2. Resolution: ~0.2 μm

- **Electron microscopy (EM)**
 1. Electron beam
 2. Resolution: ~0.05 nm

- **Scanning probe microscopy (SPM)**
 1. Probe tips or current or laser, etc
 2. Resolution: ~0.05 nm

http://en.wikipedia.org/wiki/Microscopy
Differences in Various Microscopy

<table>
<thead>
<tr>
<th>Source</th>
<th>Optical</th>
<th>EM</th>
<th>SPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>visible light</td>
<td>electron beam</td>
<td>probes (tips, current, etc)</td>
</tr>
<tr>
<td>Source</td>
<td>visible light</td>
<td>electron beam</td>
<td>probes (tips, current, etc)</td>
</tr>
<tr>
<td>Source</td>
<td>visible light</td>
<td>electron beam</td>
<td>probes (tips, current, etc)</td>
</tr>
<tr>
<td>Probing</td>
<td>Contrast (differences in light intensities)</td>
<td>Contrast in electron densities (electron-sample interaction)</td>
<td>force (AFM) or current (STM) or laser (SNOM) between tips and sample</td>
</tr>
<tr>
<td>Probing</td>
<td>Contrast (differences in light intensities)</td>
<td>Contrast in electron densities (electron-sample interaction)</td>
<td>force (AFM) or current (STM) or laser (SNOM) between tips and sample</td>
</tr>
<tr>
<td>Probing</td>
<td>Contrast (differences in light intensities)</td>
<td>Contrast in electron densities (electron-sample interaction)</td>
<td>force (AFM) or current (STM) or laser (SNOM) between tips and sample</td>
</tr>
<tr>
<td>Resolution*</td>
<td>0.2 μm</td>
<td>0.05 nm</td>
<td>0.05 nm</td>
</tr>
<tr>
<td>Resolution*</td>
<td>0.2 μm</td>
<td>0.05 nm</td>
<td>0.05 nm</td>
</tr>
<tr>
<td>Resolution*</td>
<td>0.2 μm</td>
<td>0.05 nm</td>
<td>0.05 nm</td>
</tr>
<tr>
<td>Experimental environments</td>
<td>STP or cryogenic</td>
<td>STP or UHV (RT or cryogenic)</td>
<td>STP or UHV (RT or cryogenic)</td>
</tr>
<tr>
<td>Experimental environments</td>
<td>STP or cryogenic</td>
<td>STP or UHV (RT or cryogenic)</td>
<td>STP or UHV (RT or cryogenic)</td>
</tr>
<tr>
<td>Experimental environments</td>
<td>STP or cryogenic</td>
<td>STP or UHV (RT or cryogenic)</td>
<td>STP or UHV (RT or cryogenic)</td>
</tr>
</tbody>
</table>

STP: standard conditions for temperature and pressure (20 °C and 1 atm)
Optical Microscope

1. Employ light source
2. Two lenses: objective and eyepiece
3. Conventional microscope (Compound microscope)
4. Major variants
 - Biological vs. metallurgical microscope: transmitted light illumination or epi-illumination
 - Upright vs. inverted microscope:
 - Dark field, bright field, vs. phase-contrast microscope
 - Plan vs. polarized light microscope: polarized light
 - Stereo microscope: 3-dimensional view
 - Comparison microscope
Electron Microscopy

1. Scanning electron microscopy (SEM)
2. Tunneling electron microscopy (TEM)
3. Reflection electron microscopy (REM)
4. Scanning transmission electron microscopy (STEM)
5. Microprobe analysis
 • Energy dispersive x-ray analysis (EDX)
 • Wave dispersive x-ray analysis (WDS)

1. Atomic force microscopy (AFM)
2. Scanning tunneling microscopy (STM)
3. Scanning capacitance microscopy (SCM)
4. Scanning Near-field optical microscopy (SNOM)

Lecture 2

Variants of Optical Microscopy
Can You See Something in the Box?
Can You See Something in the Box Now?
What’s the Contrast?

- The difference in visual properties (lightness and intensity) that makes an object (or its representation in an image) distinguishable from other objects and the background.
- In visual perception of the real world, contrast is determined by the difference in the color and brightness of the object and other objects within the same field of view.
Light Intensity (Amplitude) vs Contrast
Contrast Produces Image
1. Compound microscope (one light path)
 - Two stage of magnification via two lenses (objective and eyepiece)
 - Conventional microscope
 - Trans-illumination: transparent biological samples
 - Epi-illumination or reflected illumination: opaque or nontransparent samples
 - Upright vs. inverted microscope
 - Dark field, bright field, vs. phase-contrast microscope

2. Stereo microscope (two light paths)
 - Reflected illumination
 - Limited magnification (X100)
 - 3-dimensional view via two light paths
Biological Microscope: Trans-illumination for Transparent Samples

Light source
Metallurgical Microscope:
Epi-Illumination for Non-Transparent Samples

Please notice the difference in the location of light source
Upright and Inverted Microscope

Top Down

Bottom Up
When you look through the lens of a microscope you **see** a circular area, the diameter of which is known as the **field of view**.

It depends on magnifications.
1. **Bright field optical microscope**
 a) Most common type
 b) Sample illumination is transmitted (i.e., illuminated from below and observed from above) white light.

2. **Dark field optical microscope** (see next page)
 a) exclude the unscattered beam from the image. As a result, the field around the specimen (i.e. where there is no specimen to scatter the beam) is generally dark.

3. **Phase contrast optical microscope**
 a) small phase shifts in the light passing through a transparent specimen are converted into amplitude or contrast changes in the image.
Dark Field vs. Bright Field Microscope

- **Eye**
- **Eyepiece**
- **Objective**
- **Stage**
- **Filter Holder**
- **Condenser**
- **Lamp**

Indirect illumination

Darkfield

Direct illumination

Brightfield
Dark Field vs. Bright Field Microscope
Issues in Dark Field and Bright Field Microscope

(a) Lack in contrast (not clear, details are not clear)
(b) Lack in contrast (not clear)
Wide field (A) and confocal (B) image of a triple-labeled cell aggregate (mouse intestine section)
Polarized Light Microscope (PLM)

Polarizer
Analyzer
Compensator

Figure 1

http://www.olympusmicro.com/primer/techniques/polarized/polarizedintro.html
The stereo microscope uses two separate optical paths with two objectives and two eyepieces to provide slightly different viewing angles to the left and right eyes.

Will be used for cases where three-dimensional observation and perception of depth and contrast is critical to the interpretation of specimen structure.

http://www.microscopyu.com/articles/stereomicroscopy/stereointro.html
Stereo Microscope: Two Light Paths

Common main objective principle

Greenough principle
The comparison microscope is used to compare two materials under the same optical conditions.

The bridge connects the two identical microscopes and allows a split field of view that permits a side-by-side comparison of both images.

human hair (left) that has tested positive for cosmetic bleaching using a staining technique (right).