Lecture 10

Plan Polarized Light and Interference

Unpolarized vs. Polarized Light

How to Make Polarized Light

polarized

Light After Two Polarizers

Details of Light After Two Polarizers

- Polarization was changed (angle)
- The intensity was reduced $(I = I_0 \cos \theta)$

Unpolarized Light After Isotropic Crystal

Polarized Light After Isotropic Crystal

Unpolarized Light After Uniaxial Crystal: Orientation Dependence

Polarized Light After Uniaxial Crystal: Orientation Dependence

Demo: Images after Calcite (Uniaxial Crystal) and Polarizer

Pleochroism: Change in Contrast and Colors of Crystal Particles under Polarized Light

Pleochroism: Change in Colors of Crystal Particles

Change in Contrast of Crystal Particles

Birefringent Calcite Crystal Electric Vector Orientations

Pleochroism: Change in Contrast

s- and p-Polarized Lights

s: oscillating parallel to the reflection surface p: oscillating perpendicular to the reflection surface

Reflection of Polarized Light

- More s-polarized light is reflected (30 degree)
- More p-polarized light is refracted
- 100 % s-polarized is reflected at Brewster angle (θ_{B})
- glass (~56°), water (~55°),

Polarizer in Daily Life

© The-Digital-Picture.com

Direct and Reflected Light

Images after Polarizer

http://www.cs.mtu.edu/~shene/DigiCam/User-Guide/filter/polarizer.html

LCD and Polarizer

More about LCD: Color and Contrast

http://www.chem.purdue.edu/gchelp/cchem/RGBColors/body_rgbcolors.html

Interference of Light

- Same directions
- Constant phase relationship (coherent)

Thin Film Interference of Light: Reflection Angle Dependence

Why and How: Thin Film Interference

Red (λ) = 720 nm

If wave B travels extra 360 nm, then red is gone, you can see _____ color.

Complementary Color

Color Depends on Thickness

Red (λ) = 720 nm

If wave B and D travels extra 360 nm ($\frac{1}{2}\lambda$) and 1080 nm ($\frac{3}{2}\lambda$), then red is gone, you can see same cyan color.

Lecture 11

PLM and Interference

http://www.brocku.ca/earthsciences/people/gfinn/optical/222lect.htm http://edafologia.ugr.es/optmine/indexw.htm

Polarized Light Microscope

What's More in Polarized Light Microscope

- Specialized Stage a 360-degree circular rotating specimen stage
- Eyepieces with a cross wire reticle (or graticule) to mark the center of the field of view.
- Strain Free Objectives P, PO, or Pol on the barrel.
- Centerable Revolving Nosepiece
- Strain Free Condenser
- Bertrand Lens
- Compensator and Retardation Plates

Strain Free Objectives

Strain-Free Objectives for Polarized Light Microscopy

- Strain (or stress): a source of distorted of images
- Use homogenous (isotropic) glasses, crystals and other materials used to make the lenses
- Avoid multiple lenses which are cemented together and mounted in close proximity with tightly fitting frames.

Circular Stage

Centering Circular Stage

Can be centered via either circular stage or objectives Depends on manufacturer of microscopes

- 1. Put a recognizable speck of something exactly under the crosshair intersection.
- 2. Rotate the stage until the speck is as far from the intersection as possible.
- 3. Turn the stage (or objective) centering screws to move the speck half way back to the crosshair intersection
- 4. Move the thin section to bring the speck back to the crosshair intersection.

Microscopic Images with Different Polarizer Setup

plane-polarized light

crossed polarizers

crossed polarizers and a full-wave retardation plate

How Polarized Light Microscope Works

Views With and Without Analyzer

Origin of Colors

- Polarizer
- Polarized light > minerals (uniaxial or biaxial)
- Splits two components with different speeds
- Retardation (R)
- Analyzer > combine
- Destructive interference
- You can see complementary color

Retardation

- Thickness of crystal (T)
- ∆n (n₁-n₂)
- Birefringence (B): $\Delta n = n_1 n_2$
- B: Highest lowest refractive index in a material
- Retardation $\propto T \cdot \Delta n$

 $B = R(nm)/[T(\mu m) \cdot 1000]$

Substance	В
Isotropic (n)	0
Uniaxial (2n)	$ \omega - 3 $
Biaxial (3n)	$\gamma - \alpha$
Fibers	n – n⊥

Rock Thin Section: Retardation Depends on Birefringence

Why Repeating Colors

- Most consistently repeating color is red ~560 nm
- 0 550 nm: 1st
- 550 1100 nm: 2nd
- 1100 1650 nm: 3rd

Retardation	Color
0 nm (isotropic)	Black (~gray)
1 st – 3 rd	Vibrant colors of variety of colors
4 th – 8 th	Pale repeating (pink & green)
Above 8 th	White (washed out)

Orders of Colors: Fibers

Qualitative Term	В
Isotropic	0
Low	B < 0.01
Moderate	0.01 < B < 0.05
High	0.05 < B

Michel Lévy Color Chart

Measure thickness > color > birefringence

How to Calculate Birefringence

B = R(nm)/[T(μm)•1000] =(640 nm/[72 μm•1000] =0.009

From ML Chart

How to Calculate Birefringence

Types of Extinction

Symmetrical Extinction

Basic Vector Operation

Symmetrical Extinction: Vector Analysis

What you can see is the magnitude of R (Analyzer Component)

Parallel Extinction: Fibers and Hairs

Cant' see hairs (or fibers) if they are aligned parallel (or perpendicular) to polarization

Exercise

 Decide isotropic and anisotropic of five of your samples

• Check the extinction

 Measure the size of any of anisotropic mineral sample

Calculate birefringence of your anisotropic mineral sample