Lecture 10

Plan Polarized Light and Interference

Unpolarized vs. Polarized Light

Electric filed

How to Make Polarized Light

Light After Two Polarizers

Details of Light After Two Polarizers

after

Intensity (I)

- Polarization was changed (angle)
- The intensity was reduced $\left(\mathrm{I}=\mathrm{I}_{0} \cos \theta\right)$

Unpolarized Light After Isotropic Crystal

Isotropic regardless of orientation

No change in ploarization

Polarized Light After Isotropic Crystal

Isotropic regardless of orientation

No change in ploarization

Unpolarized Light After Uniaxial Crystal: Orientation Dependence

no polarizer

two polarizers

isotropic
anisotropic

Polarized Light After Uniaxial Crystal: Orientation Dependence

Demo: Images after Calcite (Uniaxial Crystal) and Polarizer

Nicol Polarizing Prism

Figure 3
Ordinary Ray

Pleochroism: Change in Contrast and Colors of Crystal Particles under Polarized Light

1.607
1.649
1.607
1.649

Medium $\mathrm{n}=1.662$

Pleochroism: Change in Colors of Crystal Particles

Change in Contrast of Crystal Particles

Birefringent Calcite Crystal Electric Vector Orientations

Polarizer

(c)

Pleochroism: Change in Contrast

s- and p-Polarized Lights

s: oscillating parallel to the reflection surface p: oscillating perpendicular to the reflection surface

Reflection of Polarized Light

- More s-polarized light is reflected (30 degree)
- More p-polarized light is refracted
- 100 \% s-polarized is reflected at Brewster angle $\left(\theta_{\mathrm{B}}\right)$
- glass $\left(\sim 56^{\circ}\right)$, water $\left(\sim 55^{\circ}\right)$,

Polarizer in Daily Life

Light Waves Vibrating

Direct and Reflected Light

Images after Polarizer

http://www.cs.mtu.edu/~shene/DigiCam/User-Guide/filter/polarizer.html

LCD and Polarizer

Figure 3

More about LCD: Color and Contrast

a pixel consisting of the red, green and blue color

Color
Pixel

Color

Pixel

Pixel

Black, White, and Gray: Nothing, All, or Some

Red, Green and Blue: Pure Colors

Color
Pixel

Pixel

Pixel

Cyan, Purple, and Yellow: Combinations of Two Colors

Mixtures of Three Colors

Pixel

Pixel

Pixel

Interference of Light

(a) Constructive interference

(b) Destructive interference

- Same directions
- Constant phase relationship (coherent)

Thin Film Interference of Light: Reflection Angle Dependence

Why and How: Thin Film Interference

incident sunlight

$\operatorname{Red}(\lambda)=720 \mathrm{~nm}$
If wave B travels extra 360 nm , then red is gone, you can see color.

Complementary Color

CIE xy Chromaticity Diagram

Color Depends on Thickness

$\operatorname{Red}(\lambda)=720 \mathrm{~nm}$
If wave B and D travels extra $360 \mathrm{~nm}(1 / 2 \lambda)$ and 1080 nm $(3 / 2 \lambda)$, then red is gone, you can see same cyan color.

Lecture 11

PLM and Interference

Polarized Light Microscope

Polarized Light Microscope Configuration

What's More in Polarized Light Microscope

- Specialized Stage - a 360-degree circular rotating specimen stage
- Eyepieces with a cross wire reticle (or graticule) to mark the center of the field of view.
- Strain Free Objectives - P, PO, or Pol on the barrel.
- Centerable Revolving Nosepiece
- Strain Free Condenser
- Bertrand Lens
- Compensator and Retardation Plates

Strain Free Objectives

Strain-Free Objectives for Polarized Light Microscopy

- Strain (or stress): a source of distorted of images
- Use homogenous (isotropic) glasses, crystals and other materials used to make the lenses
- Avoid multiple lenses which are cemented together and mounted in close proximity with tightly fitting frames.

Circular Stage

Circular Stage with Optional Mechanical Translation Attachment

Figure 6

Centering Circular Stage

Can be centered via either circular stage or objectives Depends on manufacturer of microscopes

1. Put a recognizable speck of something exactly under the crosshair intersection.
2. Rotate the stage until the speck is as far from the intersection as possible.
3. Turn the stage (or objective) centering screws to move the speck half way back to the crosshair intersection
4. Move the thin section to bring the speck back to the crosshair intersection.

Microscopic Images with Different Polarizer Setup

plane-polarized light

crossed polarizers

crossed polarizers and a full-wave retardation plate

How Polarized Light Microscope Works

Views With and Without Analyzer

Origin of Colors

- Polarizer
- Polarized light > minerals (uniaxial or biaxial)
- Splits two components with different speeds
- Retardation (R)
- Analyzer > combine
- Destructive interference
- You can see complementary color

Retardation

Retardation (R)

- Thickness of crystal (T)
- $\Delta n\left(n_{1}-n_{2}\right)$
- Birefringence (B): $\Delta \mathrm{n}=\mathrm{n}_{1}-\mathrm{n}_{2}$
- B: Highest - lowest refractive index in a material
- Retardation $\propto \mathrm{T} \cdot \Delta \mathrm{n}$

$$
\mathrm{B}=\mathrm{R}(\mathrm{~nm}) /[\mathrm{T}(\mu \mathrm{~m}) \cdot 1000]
$$

Substance	B	
Isotropic (n)	0	
Uniaxial (2n)	$\|\varepsilon-\omega\|$	
Biaxial (3n)	$\gamma-\alpha$	
Fibers	$\left\|n_{\\|}-\mathrm{n}_{\perp}\right\|$	

Rock Thin Section: Retardation Depends on Birefringence

Why Repeating Colors

Orders of Colors

- Most consistently repeating color is red $\sim 560 \mathrm{~nm}$
- $0-550 \mathrm{~nm}$: $1^{\text {st }}$
- $550-1100 \mathrm{~nm}: 2^{\text {nd }}$
- 1100-1650 nm: $3^{\text {rd }}$

Retardation	Color
0 nm (isotropic)	Black (\sim gray)
$1^{\text {st }}-3^{\text {rd }}$	Vibrant colors of variety of colors
$4^{\text {th }}-8^{\text {th }}$	 green)
Above $8^{\text {th }}$	White (washed out)

Orders of Colors: Fibers

Birefringence (B)

Qualitative Term	B
Isotropic	0
Low	$\mathrm{B}<0.01$
Moderate	$0.01<\mathrm{B}<0.05$
High	$0.05<\mathrm{B}$

Michel Lévy Color Chart

Measure thickness > color > birefringence

How to Calculate Birefringence

From ML Chart

How to Calculate Birefringence

Extinction: Special Orientation

Optical axis is parallel (or perpendicular) to the polarization

Uniaxial crystal

Types of Extinction

parallel

Symmetrical (distorted)

Symmetrical (distorted)

Symmetrical Extinction

Refractive Index Ellipsoid

Figure 5

Basic Vector Operation

Symmetrical Extinction: Vector Analysis

What you can see is the magnitude of R (Analyzer Component)

(a)

$$
\mathrm{R}_{\mathrm{a}}=0
$$

(b)

Figure 4

$$
R_{b}<R_{c}
$$

Parallel Extinction: Fibers and Hairs

Cant' see hairs (or fibers) if they are aligned parallel (or perpendicular) to polarization

Parallel Extinction

Exercise

- Decide isotropic and anisotropic of five of your samples
- Check the extinction
- Measure the size of any of anisotropic mineral sample
- Calculate birefringence of your anisotropic mineral sample

