Lecture 5

Resolution and Numerical Aperture

Resolution

Smallest distance between two points that can be distinguished

Airy Patterns and the Limit of Resolution

Fine Detail Acts As a Diffraction Grating

Visible light induces diffraction if two points are close

$w=0.16 \mathrm{~mm}$
$w=0.08 \mathrm{~mm}$
$w=0.04 \mathrm{~mm}$

Diffraction vs Resolution

Spacing resolved: we can see the separation of two spots

Diffraction vs Resolution

Space not resolved: you can collect only one of the rays from the diffraction pattern

Resolution

Resolution $(x)=\left(0.61^{*} \lambda\right) /(N A)$
Numerical Aperture (NA)
$N A=\mathbf{n}^{*} \sin (\mathbf{A} / 2)$
where \mathbf{n} is the index of refraction of the medium in which the lens is working, and \mathbf{A} is the angular aperture of the lens

Figure 1

Resolution depends on wavelength, n, and A (distance)

Resolution: Wavelength

Blue $(400 \mathrm{~nm})$ is better than red (650 nm)

Wavelength (Nanometers)	Resolution (Micrometers)
360	.19
400	.21
450	.24
500	.26
550	.29
600	.32
650	.34
700	.37

Resolution: NA

Low value for angular
Aperture A (α)
Low numerical aperture (NA) Large X
Low resolution

High value for angular Aperture, A (α)
High numerical aperture (NA) Small X
High resolution

Resolution: Objectives

Resolution: n

$i=1.0$
32 angle
$N A=0.6$

$i=1.515$
58 angle
NA. $=1.3$

Resolution

Objective Type

	Plan Achromat		Plan Fluorite		Plan Apochromat	
Magnificati on	N.A.	Resolution $(\mu \mathrm{m})$	N.A.	Resolution $(\mu \mathrm{m})$	N.A.	Resolution $(\mu \mathrm{m})$
4 x	0.10	2.75	0.13	2.12	0.20	1.375
10 x	0.25	1.10	0.30	0.92	0.45	0.61
20 x	0.40	0.69	0.50	0.55	0.75	0.37
40 x	0.65	0.42	0.75	0.37	0.95	0.29
60 x	0.75	0.37	0.85	0.32	0.95	0.29
100x	1.25	0.22	1.30	0.21	1.40	0.20
N.A. $=$ Numerical Aperture						

Objective Lens

http://www.microscopyu.com/articles/optics/objectiveintro.html http://www.microscopyu.com/articles/optics/objectivespecs.html

Lecture 6

Micrometry

Micrometry

Measurement through microscope

Millimeter, $\mu \mathrm{m}$ (micron)
Eyepieces with reticles are required

Stage Micrometer for Calibration

1 division $=0.01 \mathrm{~mm}(10 \mu \mathrm{~m})$
Total 100 divisions $100^{*} 0.01=1 \mathrm{~mm}$

Calibration 1 (Demo Required)

$$
(25 / 97)^{*} 10=2.58 \mu \mathrm{~m}
$$

Calibration 2

left right
OS (ocular scale) SS (stage scale)

27
1070
\# of divisions 38 60

$$
(60 / 38)^{*} 10=15.8 \mu \mathrm{~m}
$$

SS

left right
 95
 SS (stage scale)
 0
 0100
 \# of divisions 95
 100

$$
(100 / 95)^{*} 10=10.5 \mu \mathrm{~m}
$$

What's the Size?

Various Statistical Diameter

Martin's Diameter

Martin's diameter:

- The simplest means of measuring for irregular particles
- Sufficiently accurate when averaged for a large number of particles

Particle Size Distribution

Thickness Measurements

Thokness Determination

1. Top surface is sharply focused (left)
2. Micrometer reading (0)
3. Bottom (edge) was focused
4. Micrometer reading (3)
5. Difference $=3-0=3$
6. One reading $=3 \mu \mathrm{~m}$
7. (depends on manufacture)
8. Thickness $\approx 9 \mu \mathrm{~m}$

Exercise 3

1. Precisely measure the size of one division in X10 and X40 objectives
2. Choose four samples (two from group A and two from group B) and measure sample sizes (or thicknesses) and height at three different places (or particles) using either X10 or X40 objectives

A division of fine adjusting knob in your microscope is $3 \mu \mathrm{~m}$.

Lecture 7

Crystal Morphology

Crystalline and Noncrystalline

Two dimensional representation

Degrees of Crystallinity

- - - -
- - - - -
- - - - -

- - - -

$$
\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}
$$

$$
\begin{aligned}
& \left.\begin{array}{lll|ll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
0 & \bullet & \bullet & \bullet
\end{array}\right]
\end{aligned}
$$

$$
\bullet \bullet \bullet \bullet \bullet
$$

diamond

Crystal Structure

- Unit cell
- The arrangement of unit cell in space

A Crystalline Solid Can Be Constructed From A "Unit Cell" Plus Translational Operators

Unit Cell

Translation along y axis

Translation along x axis

Polymorphism 1

- The ability of a solid material to exist in more than one form or crystal structure.
- Same building block, but different 3-dimensional arrangements

- - - -

Polymorphism 2

- Same building block, but different 3-dimensional arrangements
- Different macroscopic shapes

Symmetry Element

Rotation: 2, 3, 4, 6
Center Plan

Unit Cell and Crystal Parameters

Crystals are characterized by repeating units. This repeating unit is called the unit cell.

Six Crystal Systems

ORTHORHOMBIC
MONOCLINIC
TRICLINIC

Six Crystal Systems

Crystal System
Cubic
Hexagonal
Tetragonal
Orthorhombic
Monoclinic
Triclinic

Edge lengths and angles (parameters)

$$
\begin{gathered}
a=b=c ; \alpha=\beta=\gamma=90^{\circ} \\
a=b, c ; \alpha=\beta=90^{\circ}, \gamma=120^{\circ} \\
a=b, c ; \alpha=\beta=\gamma=90^{\circ} \\
a, b, c ; \alpha=\beta=\gamma=90^{\circ}
\end{gathered}
$$

$\mathrm{a}, \mathrm{b}, \mathrm{c} ; \alpha=\gamma=90^{\circ} ; \beta$ not equal to 90°
a, $\mathrm{b}, \mathrm{c} ; \alpha$ not equal to β not equal to γ not equal to 90°

Crystal Forms: (Pinacoids)

cubic

orthorhombic

tetragonal

monoclinic

hexagonal

triclinic

Cubic System

Isometric System

Cube

Octahedron

Dodecahedron

Shading Helps Determine Form

plan

elevation

Measurement of Profile Angles

Orientation

Crystal Habit 1

crystal structure
observed crystal forms

Crystal Habit 2

table
equant or massive
plate or flake

Twin Crystals

http://www.tulane.edu/~sanelson/eens211/twinning.htm

Twin Crystals

