

Resolution and Numerical Aperture

Smallest distance between two points that can be distinguished

Fine Detail Acts As a Diffraction Grating

Visible light induces diffraction if two points are close

Diffraction vs Resolution

Spacing resolved: we can see the separation of two spots

Diffraction vs Resolution

Space not resolved: you can collect only one of the rays from the diffraction pattern

Resolution

Resolution (*x*) = $(0.61^*\lambda)/(NA)$

Numerical Aperture (NA)

$$NA = \mathbf{n}^* \sin(\mathbf{A}/2)$$

where **n** is the index of refraction of the medium in which the lens is working, and **A** is the angular aperture of the lens

Resolution depends on <u>wavelength</u>, <u>n</u>, <u>and A</u> (distance)

Resolution: Wavelength

Blue (400 nm) is better than red (650 nm)

Wavelength (Nanometers)	Resolution (Micrometers)
360	.19
400	.21
450	.24
500	.26
550	.29
600	.32
650	.34
700	.37

Low value for angular Aperture A (α) Low numerical aperture (NA) Large X Low resolution High value for angular Aperture, A (α) High numerical aperture (NA) Small X High resolution

Resolution: Objectives

4X 10X 20X

Resolution: n

Resolution

Objective	Type
-----------	------

	Plan A	chromat	Plan	Fluorite	Plan Ap	ochromat
Magnificati on	N.A.	Resolution (µm)	N.A.	Resolution (µm)	N.A.	Resolution (µm)
4x	0.10	2.75	0.13	2.12	0.20	1.375
10x	0.25	1.10	0.30	0.92	0.45	0.61
20x	0.40	0.69	0.50	0.55	0.75	0.37
40x	0.65	0.42	0.75	0.37	0.95	0.29
60x	0.75	0.37	0.85	0.32	0.95	0.29
100x	1.25	0.22	1.30	0.21	1.40	0.20
N.A. = Nume	rical Apert	ure				

Objective Lens

http://www.microscopyu.com/articles/optics/objectiveintro.html http://www.microscopyu.com/articles/optics/objectivespecs.html

Micrometry

Micrometry

Measurement through microscope

Millimeter, µm (micron)

Eyepieces with reticles are required

Stage Micrometer for Calibration

1 division = 0.01 mm (10 μ m)

Total 100 divisions 100*0.01 = 1 mm

Calibration 1 (Demo Required)

(25/97)*10 = 2.58 μm

Calibration 2

(60/38)*10 = 15.8 μm

	left	right	# of divisions
OS (ocular scale)	0	95	95
SS (stage scale)	0	100	100

 $(100/95)*10 = 10.5 \ \mu m$

What's the Size?

What's the Size?

Various Statistical Diameter

Martin's Diameter

Martin's diameter:

- The simplest means of measuring for irregular particles
- Sufficiently accurate when averaged for a large number of particles

Particle Size Distribution

Thickness Measurements

- 1. Top surface is sharply focused (left)
- 2. Micrometer reading (0)
- 3. Bottom (edge) was focused
- 4. Micrometer reading (3)
- 5. Difference = 3 0 = 3
- 6. One reading = $3 \mu m$
- 7. (depends on manufacture)
- 8. Thickness \approx 9 μ m

Exercise 3

1. Precisely measure the size of one division in X10 and X40 objectives

 Choose four samples (two from group A and two from group B) and measure sample sizes (or thicknesses) and height at three different places (or particles) using either X10 or X40 objectives

A division of fine adjusting knob in your microscope is 3 μ m.

Crystal Morphology

Crystalline and Noncrystalline

Two dimensional representation

Crystal Structure

- Unit cell
- The arrangement of unit cell in space

diamond

A Crystalline Solid Can Be Constructed From A "Unit Cell" Plus Translational Operators

Translation along x axis Translation along z axis

- The ability of a solid material to exist in more than one form or crystal structure.
- Same building block, but different 3-dimensional arrangements

- Same building block, but different 3-dimensional arrangements
- Different macroscopic shapes

Rotation: 2, 3, 4, 6 Center Plan

Unit Cell and Crystal Parameters

Crystals are characterized by repeating units. This repeating unit is called the **unit cell**.

B₁ = B₂ = B₃ ≠ C angles a_{1.3} to c = 90° angles between a axes = 60°

ISOMETRIC (CUBIC)

TETRAGONAL

HEXAGONAL

ORTHORHOMBIC

MONOCLINIC

TRICLINIC

Crystal System	Edge lengths and angles (parameters)
Cubic	$a=b=c; \alpha=\beta=\gamma=90^{\circ}$
Hexagonal	a=b, c ; α=β=90°, γ=120°
Tetragonal	a=b, c; $\alpha = \beta = \gamma = 90^{\circ}$
Orthorhombic	a, b, c ; $\alpha = \beta = \gamma = 90^{\circ}$
Monoclinic	a, b, c ; $\alpha = \gamma = 90^{\circ}$; β not equal to 90°
Triclinic	a, b, c ; α not equal to β not equal to γ not equal to 90^o

Crystal Forms: (Pinacoids)

Isometric System

Shading Helps Determine Form

Measurement of Profile Angles

crystal structure

observed crystal forms

table

equant or massive

http://www.tulane.edu/~sanelson/eens211/twinning.htm

