Lecture 8

Measuring Refractive Index

Refractive Index

Refractive index (n)

Becke Line Test

1. The indices of refraction of the particle and surrounding medium are different.
2. The microscope is defocused (on the sample).

Refraction of Light

Light bends toward (or away) from surface normal.

Formation of Becke Line

Can be used to find refractive index of unknown materials using standard liquids

How to Check Becke Line

1. Prepare a series of samples in media with different refractive indices
2. High contrast > close down condenser aperture
3. Control wavelength $>$ yellow is best $>$ use orange filter
4. Raise the focus > lower the stage $>$ rotate toward you
5. Decide the refractive index depending on the position of Becke line

Refractive Index Measurements via Becke Line Test

1. One unknown sample
2. Choose standard refractive index liquids (1.4 and 1.8)
3. Decide whether refractive index is equal, greater, or less than refractive index you choose

Recrystallization of Inorganic/Organic Salts

Melt-Recrystallization Sample Preparation

1. Sublimation
2. Evaporation

- 10X Objective
- Supersaturation

Bunsen Burner

Figure 1
3. Transfer saturated solution "Huffing"

Detection of Lead

$\begin{array}{llll}\mathrm{KI} & \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} & \mathrm{KI} & \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\end{array}$

Pbl_{2}

Exercise 5: Fiber Sample Preparation (see handout)

1. Three samples (hair and two fibers)
2. Your hair (cut one or two hair of ~ 1 ")
3. Choose your sample in the list
4. Label your samples with marker (initial and sample name) on the slide glass
5. Cure them for a week
6. Place them in your assigned positions in a sample box by next week

Exercise 6: Mineral Sample Preparation (see handout)

1. DO NOT contaminate your sample
2. Use very small portion of your sample
3. Evaporation

4. Transfer saturated solution "Huffing"

Lecture 9

Crystal Optics

Isotropic vs Anisotropic

Refractive index: interaction between electromagnetic light and materials (ions and molecules)

Isotropic: Equal refractive index in all directions (one n)
Anisotropic: Not equal refractive index in all directions (two or three n)

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{a}}=\mathrm{n}_{\mathrm{b}} \neq \mathrm{n}_{\mathrm{c}} \\
& \mathrm{n}_{\mathrm{a}} \neq \mathrm{n}_{\mathrm{b}} \neq \mathrm{n}_{\mathrm{c}}
\end{aligned}
$$

Cubic (Isotropic) Indicatrix

- Same refractive index in all directions
- Light travelling in all directions has same speed
- Cross sections are always circle (radius n)
- Cubic crystal system only

Image though Calcite

Two rows of dots, with each row corresponding to one of the two light rays formed as the light is split upon entering the calcite.

Single row of dots on a piece of paper.

Uniaxial Indicatrix 1

- Two refractive indices
- $\mathrm{n}_{\mathrm{a}}=\mathrm{n}_{\mathrm{b}}(\omega) \neq \mathrm{n}_{\mathrm{c}}(\varepsilon)$
- Light travels in different speed depending on directions
- Hexagonal and tetragonal crystal systems

$$
\begin{gathered}
\mathrm{n}_{\mathrm{a}}=\mathrm{n}_{\mathrm{b}}(\omega) \neq \mathrm{n}_{\mathrm{c}}(\varepsilon) \\
\omega<\varepsilon \text { or } \\
\omega>\varepsilon
\end{gathered}
$$

Uniaxial Indicatrix (Positive)

If $\omega<\varepsilon$ (positive)
$Z=$ optic axis $=c$-axis

Circular Section Radius $=n_{n}$

Unlaxlal Positlve Indlcatrlx Elongated along the optc axls c-axls = optls axls c -ax|s $=\mathrm{Z}$ Indlcatrlx axls

Uniaxial Indicatrix (Negative)

If $\omega>\varepsilon$ (negative)
$X=$ optic axis $=c$-axis

$$
\mathrm{n}_{\mathrm{r}}<\mathrm{n}_{\pi}
$$

Uniaxial Negative Indicatrix Flattened along the optic axis c -axis $=$ optic axis c -axis $=\mathrm{X}$ indicatrix axis

Random Section Vibration Directions

Uniaxial Crystal: Orientation-Dependence

isotropic

anisotropic

Calcite Double Refraction

Birefringence: Double Refraction

Materisl with two (or more) refractive indices
For calcite,
$\mathrm{n}_{\text {omega }}=1.658$ (parallel to c axis, ordinary ray, regardless of the direction).
$\mathrm{n}_{\text {epsilon }}=1.486$ to 1.658 (perpendicular to c axis extraordinary ray, dependant on the direction)
calcite, $\Delta \mathrm{n}=0.172$ (two images with very large separation quartz, $\Delta \mathrm{n}=0.009$ (two images with very little separation)

Crystal name	ω	ε
rock crystal (quartz)	1.5443	1.5534
calcite	1.6584	1.4864
sapphire	1.768	1.760

Biaxial Indicatrix 1

- Three refractive indices
- $\mathrm{n}_{\mathrm{a}}(\alpha) \neq \mathrm{n}_{\mathrm{b}}(\beta) \neq \mathrm{n}_{\mathrm{c}}(\gamma)$
- Light travels in different speed depending on directions
- Orthorhombic, monoclic, and triclinic crystal systems
- by definition, $\gamma>\beta>\alpha$
- $\gamma-\beta>\beta-\alpha(+)$: positive
- $\gamma-\beta<\beta-\alpha(-)$: negative

Biaxial Indicatrix 2

Biaxial minerals have three indices of refraction, ($\boldsymbol{n}_{z}, n_{p}, n_{i}$) each of which is measured along an indicatrix axis as shown on the left, such that the following relationship holds: $\quad n_{i r}<n_{\beta}<n_{\because}$.
\square XZ plane with axes \mathbf{n}_{2} and \mathbf{n}_{5}
\square $Y Z$ plane with axes n_{3} and n_{3}
\square XY plane with axes \mathbf{n}_{α} and $\mathbf{n}_{\text {s }}$

Biaxial Crystal: Orientation-Dependence

- $\quad \gamma$ and β for YZ plan
- $\quad \gamma$ and α for XZ plan
- α and β for XY plan

Random orientation

- $\gamma, \gamma^{\prime}, \beta, \beta^{\prime}, \alpha$, and α^{\prime} depending on the orientation

Biaxial Crystal: Orientation-Dependence

