# Lecture 8

# Measuring Refractive Index

#### **Refractive Index**



Refractive index (n)

#### **Becke Line Test**

- The indices of refraction of the particle and surrounding medium are different.
- 2. The microscope is defocused (on the sample).



Friedrich Becke (1855-1931)





Becke line

#### **Refraction of Light**



Light bends toward (or away) from surface normal.

#### Formation of Becke Line



Can be used to find refractive index of unknown materials using standard liquids

#### How to Check Becke Line

- 1. Prepare a series of samples in media with different refractive indices
- 2. High contrast > close down condenser aperture
- 3. Control wavelength > yellow is best > use orange filter
- Raise the focus > lower the stage > rotate toward you
- 5. Decide the refractive index depending on the position of Becke line

#### Refractive Index Measurements via Becke Line Test

- 1. One unknown sample
- Choose standard refractive index liquids (1.4 and 1.8)
- 3. Decide whether refractive index is equal, greater, or less than refractive index you choose

# Recrystallization of Inorganic/Organic Salts

1. Sublimation

- 2. Evaporation
  - 10X Objective
  - Supersaturation





3. Transfer saturated solution "Huffing"



#### **Detection of Lead**



 $Pbl_2$ 



# Exercise 5: Fiber Sample Preparation (see handout)

- 1. Three samples (hair and two fibers)
- 2. Your hair (cut one or two hair of  $\sim 1$ ")
- 3. Choose your sample in the list
- 4. Label your samples with marker (initial and sample name) on the slide glass
- 5. Cure them for a week
- 6. Place them in your assigned positions in a sample box by next week

# Exercise 6: Mineral Sample Preparation (see handout)

- 1. DO NOT contaminate your sample
- 2. Use very small portion of your sample
- 3. Evaporation



4. Transfer saturated solution "Huffing"





# **Crystal Optics**

http://www.brocku.ca/earthsciences/people/gfinn/optical/222lect.htm

Refractive index: interaction between electromagnetic light and materials (ions and molecules)

Isotropic vs Anisotropic

Isotropic: Equal refractive index in all directions (one n)

Anisotropic: Not equal refractive index in all directions (two or three n)



### Cubic (Isotropic) Indicatrix

- Same refractive index in all directions
- Light travelling in all directions has same speed
- Cross sections are always circle (radius n)
- <u>Cubic crystal system only</u>





#### Image though Calcite



## Uniaxial Indicatrix 1

- Two refractive indices
- $n_a = n_b (\omega) \neq n_c (\varepsilon)$
- Light travels in different speed depending on directions
- Hexagonal and tetragonal crystal systems





#### Uniaxial Indicatrix (Positive)





Circular Section Radius =  $n_{\infty}$ 



Unlaxial Positive Indicatrix Elongated along the optic axis c-axis = optic axis c-axis = Z indicatrix axis Uniaxial Indicatrix (Negative)

If  $\omega > \varepsilon$  (negative)



#### **Random Section Vibration Directions**



#### Uniaxial Crystal: Orientation-Dependence



#### **Calcite Double Refraction**





#### **Birefringence: Double Refraction**

Materisl with two (or more) refractive indices

For calcite,

 $n_{omega} = 1.658$  (parallel to c axis, ordinary ray, regardless of the direction).

 $n_{epsilon} = 1.486$  to 1.658 (perpendicular to c axis extraordinary ray, dependent on the direction)

calcite,  $\Delta n = 0.172$  (two images with very large separation quartz,  $\Delta n = 0.009$  (two images with very little separation)

| Crystal name          | ω      | ε      |
|-----------------------|--------|--------|
| rock crystal (quartz) | 1.5443 | 1.5534 |
| calcite               | 1.6584 | 1.4864 |
| sapphire              | 1.768  | 1.760  |

## **Biaxial Indicatrix 1**

- Three refractive indices
- $n_a(\alpha) \neq n_b(\beta) \neq n_c(\gamma)$
- Light travels in different speed depending on directions
- Orthorhombic, monoclic, and triclinic crystal systems

- by definition,  $\gamma > \beta > \alpha$
- $\gamma \beta > \beta \alpha$  (+): positive •  $\gamma - \beta < \beta - \alpha$  (-): negative



#### **Biaxial Indicatrix 2**



Biaxial minerals have three indices of refraction,  $(n_{\alpha}, n_{\beta}, n_{\gamma})$  each of which is measured along an indicatrix axis as shown on the left, such that the following relationship holds:  $n_{\alpha} < n_{\beta} < n_{\gamma}$ .



XZ plane with axes **n**<sub>a</sub> and **n**<sub>a</sub>

YZ plane with axes **n**<sub>2</sub> and **n**<sub>4</sub>

**XY** plane with axes  $n_a$  and  $n_y$ 

#### **Biaxial Crystal: Orientation-Dependence**



- $\gamma$  and  $\beta$  for YZ plan
- $\gamma$  and  $\alpha$  for XZ plan
- α and β for XY
  plan

#### Random orientation

γ, γ', β, β', α, and
 α' depending on
 the orientation

#### **Biaxial Crystal: Orientation-Dependence**





