Lecture 5

Random Errors in Chemical Analysis -11

A measurement x_1 , with μ and σ

Random!

I am making a second measurement x_2 of the same analyte.

It has the same $\boldsymbol{\mu}$

We do not know it!

It has the same $\boldsymbol{\sigma}$

As an estimate of my unknown $\boldsymbol{\mu}$ I will use average

$$\overline{x} = \frac{x_1 + x_2}{2}$$

$$\sigma_{1+2} = \sqrt{\sigma_1^2 + \sigma_2^2} = \sqrt{2\sigma^2} = \sqrt{2} \times \sigma$$
$$\sigma_{av} = \frac{\sigma_{1+2}}{2} = \frac{\sqrt{2} \times \sigma}{2} = \frac{\sigma}{\sqrt{2}}$$

Table 4-1Ordinate and area for the normal (Gaussian) error curve, $y = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$

$ z ^a$	у	Area ^b	z	у	Area	z	у	Area
0.0	0.398 9	0.000 0	1.4	0.149 7	0.419 2	2.8	0.007 9	0.497 4
0.1	0.397 0	0.039 8	1.5	0.129 5	0.433 2	2.9	0.006 0	0.498 1
0.2	0.391 0	0.079 3	1.6	0.110 9	0.445 2	3.0	0.004 4	0.498 650
0.3	0.381 4	0.117 9	1.7	0.094 1	0.455 4	3.1	0.003 3	0.499 032
0.4	0.368 3	0.155 4	1.8	0.079 0	0.464 1	3.2	0.002 4	0.499 313
0.5	0.352 1	0.191 5	1.9	0.065 6	0.471 3	3.3	0.001 7	0.499 51
0.6	0.333 2	0.225 8	2.0	0.054 0	0.477 3	3.4	0.001 2	0.499 66.
0.7	0.312 3	0.258 0	2.1	0.044 0	0.482 1	3.5	0.000 9	0.499 76
0.8	0.289 7	0.288 1	2.2	0.035 5	0.486 1	3.6	0.000 6	0.499 84
0.9	0.266 1	0.315 9	2.3	0.028 3	0.489 3	3.7	0.000 4	0.499 904
1.0	0.242 0	0.341 3	2.4	0.022 4	0.491 8	3.8	0.000 3	0.499 928
1.1	0.217 9	0.364 3	2.5	0.017 5	0.493 8	3.9	0.000 2	0.499 952
1.2	0.194 2	0.384 9	2.6	0.013 6	0.495 3	4.0	0.000 1	0.499 968
1.3	0.171 4	0.403 2	2.7	0.010 4	0.496 5			

a. $z = (x - \mu)/\sigma$.

Case 3: We know:

Standard deviation **o** Real value ?

Take N measurements; calculate average as

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_N}{N}$$

$$\mu = \frac{-}{x} \pm \frac{2\sigma}{\sqrt{N}}$$

with 95% probability

Coinfidence interval (CI)

Case 4 We know nothing: Mean - ? Standard deviation -?

Take N measurements; calculate average as

 $\bar{x} = \frac{x_1 + x_2 + \dots + x_N}{N}$ Calculate standard deviation as $s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_N - \bar{x})^2}{N - 1}}$

Confidence interval?

I do not know σ !

Table 4-2Values of Student's t

Degrees of freedom	50	90	95	98	99	99.5	99.9	
1	1.000	6.314	12.706	31.821	63.657	127.32	636.619	
2	0.816	2.920	4.303	6.965	9.925	14.089	31.598	
3	0.765	2.353	3.182	4.541	5.841	7.453	12.924	
4	0.741	2.132	2.776	3.747	4.604	5.598	8.610	
5	0.727	2.015	2.571	3.365	4.032	4.773	6.869	
6	0.718	1.943	2.447	3.143	3.707	4.317	5.959	
7	0.711	1.895	2.365	2.998	3.500	4.029	5.408	
8	0.706	1.860	2.306	2.896	3.355	3.832	5.041	
9	0.703	1.833	2.262	2.821	3.250	3.690	4.781	
10	0.700	1.812	2.228	2.764	3.169	3.581	4.587	
15	0.691	1.753	2.131	2.602	2.947	3.252	4.073	
20	0.687	1.725	2.086	2.528	2.845	3.153	3.850	
25	0.684	1.708	2.060	2.485	2.787	3.078	3.725	
30	0.683	1.697	2.042	2.457	2.750	3.030	3.646	
40	0.681	1.684	2.021	2.423	2.704	2.971	3.551	
60	0.679	1.671	2.000	2.390	2.660	2.915	3.460	
120	0.677	1.658	1.980	2.358	2.617	2.860	3.373	
∞	0.674	1.645	1.960	2.326	2.576	2.807	3.291	

Confidence level (%)

NOTE: In calculating confidence intervals, σ may be substituted for *s* in Equation 4-6 if you have a great deal of experience with a particular method and have therefore determined its "true" population standard deviation. If σ is used instead of *s*, the value of *t* to use in Equation 4-6 comes from the bottom row of Table 4-2.

Case 4 We know nothing: Mean - ? Standard deviation -?

Take N measurements; calculate average as

 $\overline{x} = \frac{x_1 + x_2 + \dots + x_N}{N}$ Calculate standard deviation as

$$s = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_N - \overline{x})^2}{N - 1}}$$

$$\mu = \overline{x} \pm \frac{t_{95}s}{\sqrt{N}}$$

with 95% probability

Coinfidence interval (CI)

μ=12.34 s=0.50

I titrate an unknown solution using a class A 50 mL burette. My results show standard deviation of 0.05 mL. How many mesurements I need in order to get confidence interval of ±0.01 mL?

$$U_{bur} = 0.05 \text{ mL}$$

$$u_{total} = \sqrt{u_{bur}^2 + u_{random}^2}$$

N=2
$$\pm \frac{12.7 \times 0.05}{\sqrt{2}} = \pm 0.44$$

N=4
$$\pm \frac{3.18 \times 0.05}{\sqrt{4}} = \pm 0.08$$

$$u_{total} = \sqrt{0.44^2 + 0.05^2} = 0.44$$

$$u_{total} = \sqrt{0.08^2 + 0.05^2} = 0.095$$

N=9
$$\pm \frac{2.3 \times 0.05}{\sqrt{9}} = \pm 0.038$$

$$u_{total} = \sqrt{0.038^2 + 0.05^2} = 0.06$$

N=20
$$\pm \frac{2.1 \times 0.05}{\sqrt{20}} = \pm 0.02$$

$$u_{total} = \sqrt{0.02^2 + 0.05^2} = 0.054$$

N=120
$$\pm \frac{1.98 \times 0.05}{\sqrt{120}} = \pm 0.009$$

$$u_{total} = \sqrt{0.009^2 + 0.05^2} = 0.05$$

Table 4-3Masses of gas isolatedby Lord Rayleigh

	From chemical					
From air (g)	decomposition (g)					
2.310 17	2.301 43					
2.309 86	2.298 90					
2.310 10	2.298 16					
2.310 01	2.301 82					
2.310 24	2.298 69					
2.310 10	2.299 40					
2.310 28	2.298 49					
	2.298 89					
Average						
2.310 11	2.299 47					
Standard deviat	ion					
0.000 143	0.001 38					

A very simple rule: Cls overlap – the same Cls do not overlap - different