CHE301 Exam 1 Name

1.An analytical procedure required the preparation of a solution containing 100.0 ppm chromium. How many grams of potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ would be required to prepare 1.000 liter of this solution? $100.0 \mathrm{ppm}=0.1000 \mathrm{~g} / \mathrm{L} \mathrm{Cr}$
$0.1000 \mathrm{~g} / \mathrm{L} * F W\left(\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right) / 2 \mathrm{AW}(\mathrm{Cr})=0.1000 * 294.18 / 2 * 51.996=0.2829 \mathrm{~g}$
2. For very precise work, a chemist may want to calibrate the pipets used for an analysis. This was done by pipeting from a $\mathbf{2 0}-\mathrm{mL}$ pipet $\mathbf{2 0 . 0 0 0 2} \mathbf{g}$ of water at $22^{\circ} \mathrm{C}$ into a weighing bottle. What is the actual volume of the pipet? The following data is available from Table 2-7 in your text. At $22^{\circ} \mathrm{C}$ the correction factor based on the density of water and buoyancy is $\mathbf{1 . 0 0 3 3} \mathrm{mL} / \mathrm{g}$. $20.0002 * 1.0033=20.07 \mathrm{~mL}$
3. Balance the following equation: $\quad \mathrm{Sr}(\mathbf{O H})_{2}+2 \mathrm{HClO}_{4} \rightarrow \mathrm{Sr}\left(\mathrm{ClO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
4. How many significant figures are in the number 6.230×10^{23} ? 4
in 0.000120? 3
5. What is the lead concentration of a saturated solution of lead(II) sulfate containing 0.030 molar $\mathrm{Na}_{2} \mathrm{SO}_{4}$? $\mathrm{K}_{\mathrm{sp}} \mathrm{PbSO}_{4}=6.3 \times 10^{-7}$
$[\mathrm{Pb}]=\mathrm{K}_{S P} /\left[\mathrm{SO}_{4}{ }^{2-}\right]=6.3 * 10^{-7} / 0.030=2.1 * 10^{-5} \mathrm{M}$
6 In the following reaction, identify the conjugate acid-base pair.
$\mathrm{NO}_{\mathbf{2}}{ }^{-}+\mathrm{H}_{\mathbf{2}} \mathrm{O} \leftrightarrow \mathbf{H N O}_{\mathbf{2}}+\mathrm{OH}^{-}$.
Base Acid
7.If solution containing $0.01 \mathrm{M} \mathrm{Cl}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}$, and SCN^{-}.is treated with AgNO_{3}, in which order will the anions precipitate?
I,Br,SCN,Cl - in order of $K_{\text {Sp }}$ increase
8. In the following reaction (balance it first!):
$\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
how many mL of $\mathbf{0 . 1 2 3 5} \mathrm{M}_{\mathrm{HNO}}^{3}$ are required to react with $\mathbf{0 . 4 0 5 7} \mathrm{g}$ of CaCO_{3} ?
$V(m L)=2 * m\left(\mathrm{CaCO}_{3}\right) * 1000 /\left(\mathrm{FW}\left(\mathrm{CaCO}_{3}\right) * C_{H C)}\right)=2 * 0.4057 * 1000 /(100.09 * 0.1235)=65.64 m L$
9. Argentometric titrations are titrations using a standard solution of silver ions to form a silver halide precipitate. Calculate the $\left[\mathrm{Ag}^{+}\right]$value when 20.0 mL of $0.100 \mathrm{M} \mathrm{AgNO}_{3}$ is added to 20.0 mL of 0.0500 M sodium bromide. $\mathrm{K}_{\text {sp }} \mathrm{AgBr}=$ 5.0×10^{-13}
$\left[\mathrm{Ag}^{+}\right]=(0.100 * 20-0.05 * 20) / 40=0.025 \mathrm{M}$
10. Draw a formula of a conjugated base for $\mathrm{HSO}_{3}{ }^{-}$ion. $\mathrm{SO}_{3}{ }^{2-}$

