CHE 301 EXAM 2 Name

1. Calculate the molar ratio of ethylamine (CH₃CH₂NH₂) to the ethylammonium ion (CH₃CH₂NH₃⁺) in a solution with a pH of 10.0. pK_a for CH₃CH₂NH₃⁺ = 10.6

2. Estimate solubility(in molarity units) of Mg(OH)₂ at pH 12. $K_{SP}(Mg(OH)_2) = 6*10^{-10}$

3. Calculate pH of **0.05M** solution of **potassium hydrogen carbonate**. pK₁= 6.35, pK₂=10.33

4. Oxalic acid ($H_2C_2O_4$) has $pK_{a1} = 1.25$ and $pK_{a2} = 4.26$. At what pH is the $HC_2O_4^-$ concentration equal to the $C_2O_4^{2-}$ concentration?

5. Use your textbook to select the suitable indicator for the titration of formic acid with NaOH.

6. Estimate molarity of silver ions Ag^+ in a mixture that contains silver chloride AgCl and 10^{-3} M KCl. $K_{SP}(AgCl) = 1.8 \times 10^{-10}$.

7. In which form **pyridine** ($pK_a = 5.23$) exists at pH 3.35?

8. A sample of food (1.00 g) was mixed with appropriate amount of water and titrated using silver electrode with 0.0200 M AgNO₃. The volume necessary to reach the ending point was 5.0 mL. Calculate the %% of NaCl in the food sample.

9. Calculate the conditional formation constant K_f for the formation of an EDTA complex with zinc(II) at a pH of 3.0, if log $K_f = 16.5$. From your result, is it possible to titrate Zn(II) with EDTA at this pH? Why?

10. At pH 4, the predominant form of **arsenate** ion is ______